51 research outputs found

    An investigation of the influence of supraglacial debris on glacier-hydrology

    Get PDF
    Abstract. The influence of supraglacial debris on the rate and spatial distribution of glacier surface melt is well established, but its potential impact on the structure and evolution of the drainage system of extensively debris-covered glaciers has not been previously investigated. Forty-eight dye injections were conducted on Miage Glacier, Italian Alps, throughout the 2010 and 2011 ablation seasons. An efficient conduit system emanates from moulins in the mid-part of the glacier, which are downstream of a high melt area of dirty ice and patchy debris. High melt rates and runoff concentration by intermoraine troughs encourages the early-season development of a channelized system downstream of this area. Conversely, the drainage system beneath the continuously debris-covered lower ablation area is generally inefficient, with multi-peaked traces suggesting a distributed network, which likely feeds into the conduit system fed by the upglacier moulins. Drainage efficiency from the debris-covered area increased over the season but trace flow velocity remained lower than from the upper glacier moulins. Low and less-peaked melt inputs combined with the hummocky topography of the debris-covered area inhibits the formation of an efficient drainage network. These findings are relevant to regions with extensive glacial debris cover and where debris cover is expanding.</jats:p

    Geomorphological evolution of a debris‐covered glacier surface

    Get PDF
    There exists a need to advance our understanding of debris‐covered glacier surfaces over relatively short timescales due to rapid, climatically induced areal expansion of debris cover at the global scale, and the impact debris has on mass balance. We applied unpiloted aerial vehicle structure‐from‐motion (UAV‐SfM) and digital elevation model (DEM) differencing with debris thickness and debris stability modelling to unravel the evolution of a 0.15 km2 region of the debris‐covered Miage Glacier, Italy, between June 2015 and July 2018. DEM differencing revealed widespread surface lowering (mean 4.1 ± 1.0 m a‐1; maximum 13.3 m a‐1). We combined elevation change data with local meteorological data and a sub‐debris melt model, and used these relationships to produce high resolution, spatially distributed maps of debris thickness. These maps were differenced to explore patterns and mechanisms of debris redistribution. Median debris thicknesses ranged from 0.12 to 0.17 m and were spatially variable. We observed localized debris thinning across ice cliff faces, except those which were decaying, where debris thickened. We observed pervasive debris thinning across larger, backwasting slopes, including those bordered by supraglacial streams, as well as ingestion of debris by a newly exposed englacial conduit. Debris stability mapping showed that 18.2–26.4% of the survey area was theoretically subject to debris remobilization. By linking changes in stability to changes in debris thickness, we observed that slopes that remain stable, stabilize, or remain unstable between periods almost exclusively show net debris thickening (mean 0.07 m a‐1) whilst those which become newly unstable exhibit both debris thinning and thickening. We observe a systematic downslope increase in the rate at which debris cover thickens which can be described as a function of the topographic position index and slope gradient. Our data provide quantifiable insights into mechanisms of debris remobilization on glacier surfaces over sub‐decadal timescales, and open avenues for future research to explore glacier‐scale spatiotemporal patterns of debris remobilization

    Do debris-covered glaciers demonstrate distinctive hydrological behaviour compared to clean glaciers?

    Get PDF
    Supraglacial debris is known to strongly influence the distribution of glacier surface melt. Since melt inputs drive the formation and evolution of glacial drainage systems, it should follow that the drainage systems of debris-covered glaciers will differ from those of debris-free glaciers. This would have implications for the proglacial runoff regime, subglacial erosion and glacier dynamics. This paper presents analysis of return curves from 33 successful dye injections into the extensively debris-covered Miage Glacier, Italian Alps. It demonstrates that the spatial distribution of supraglacial debris influences the structure and seasonal evolution of the glacial drainage system. Where the debris cover is continuous, melt is lower and the surface topography is chaotic, with many small supraglacial catchments. These factors result in an inefficient englacial/subglacial drainage network beneath continuous debris, which drains to the conduit system emanating from the upper ablation zone. Melt rates are high in areas of clean and dirty ice above the continuous debris. Runoff from these areas is concentrated by inter-moraine troughs into large supraglacial streams, which encourages the early-season development of an efficient englacial/subglacial conduit system downstream of this area. Drainage efficiency from the debris-covered area increases over the melt season but dye-trace transit velocity remains lower than from moulins on the upper glacier. Future runoff models should account for the influence of supraglacial debris on the hydrological system

    Insulation effects of Icelandic dust and volcanic ash on snow and ice

    Get PDF
    In the Arctic region, Iceland is an important source of dust due to ash production from volcanic eruptions. In addition, dust is resuspended from the surface into the atmosphere as several dust storms occur each year. During volcanic eruptions and dust storms, material is deposited on the glaciers where it influences their energy balance. The effects of deposited volcanic ash on ice and snow melt were examined using laboratory and outdoor experiments. These experiments were made during the snow melt period using two different ash grain sizes (1 phi and 3.5 phi) from the Eyjafjallajokull 2010 eruption, collected on the glacier. Different amounts of ash were deposited on snow or ice, after which the snow properties and melt were measured. The results show that a thin ash layer increases the snow and ice melt but an ash layer exceeding a certain critical thickness caused insulation. Ash with 1 phi in grain size insulated the ice below at a thickness of 9-15 mm. For the 3.5 phi grain size, the insulation thickness is 13 mm. The maximum melt occurred at a thickness of 1 mm for the 1 phi and only 1-2 mm for 3.5 phi ash. A map of dust concentrations on Vatnajokull that represents the dust deposition during the summer of 2013 is presented with concentrations ranging from 0.2 up to 16.6 g m(-2).Peer reviewe

    Cognitive functioning throughout adulthood and illness stages in individuals with psychotic disorders and their unaffected siblings

    Get PDF
    Important questions remain about the profile of cognitive impairment in psychotic disorders across adulthood and illness stages. The age-associated profile of familial impairments also remains unclear, as well as the effect of factors, such as symptoms, functioning, and medication. Using cross-sectional data from the EU-GEI and GROUP studies, comprising 8455 participants aged 18 to 65, we examined cognitive functioning across adulthood in patients with psychotic disorders (n = 2883), and their unaffected siblings (n = 2271), compared to controls (n = 3301). An abbreviated WAIS-III measured verbal knowledge, working memory, visuospatial processing, processing speed, and IQ. Patients showed medium to large deficits across all functions (ES range = –0.45 to –0.73, p < 0.001), while siblings showed small deficits on IQ, verbal knowledge, and working memory (ES = –0.14 to –0.33, p < 0.001). Magnitude of impairment was not associated with participant age, such that the size of impairment in older and younger patients did not significantly differ. However, first-episode patients performed worse than prodromal patients (ES range = –0.88 to –0.60, p < 0.001). Adjusting for cannabis use, symptom severity, and global functioning attenuated impairments in siblings, while deficits in patients remained statistically significant, albeit reduced by half (ES range = –0.13 to –0.38, p < 0.01). Antipsychotic medication also accounted for around half of the impairment in patients (ES range = –0.21 to –0.43, p < 0.01). Deficits in verbal knowledge, and working memory may specifically index familial, i.e., shared genetic and/or shared environmental, liability for psychotic disorders. Nevertheless, potentially modifiable illness-related factors account for a significant portion of the cognitive impairment in psychotic disorders

    fisheries and tourism social economic and ecological trade offs in coral reef systems

    Get PDF
    Coastal communities are exerting increasingly more pressure on coral reef ecosystem services in the Anthropocene. Balancing trade-offs between local economic demands, preservation of traditional values, and maintenance of both biodiversity and ecosystem resilience is a challenge for reef managers and resource users. Consistently, growing reef tourism sectors offer more lucrative livelihoods than subsistence and artisanal fisheries at the cost of traditional heritage loss and ecological damage. Using a systematic review of coral reef fishery reconstructions since the 1940s, we show that declining trends in fisheries catch and fish stocks dominate coral reef fisheries globally, due in part to overfishing of schooling and spawning-aggregating fish stocks vulnerable to exploitation. Using a separate systematic review of coral reef tourism studies since 2013, we identify socio-ecological impacts and economic opportunities associated to the industry. Fisheries and tourism have the potential to threaten the ecological stability of coral reefs, resulting in phase shifts toward less productive coral-depleted ecosystem states. We consider whether four common management strategies (unmanaged commons, ecosystem-based management, co-management, and adaptive co-management) fulfil ecological conservation and socioeconomic goals, such as living wage, job security, and maintenance of cultural traditions. Strategies to enforce resource exclusion and withhold traditional resource rights risk social unrest; thus, the coexistence of fisheries and tourism industries is essential. The purpose of this chapter is to assist managers and scientists in their responsibility to devise implementable strategies that protect local community livelihoods and the coral reefs on which they rely
    corecore