84 research outputs found
Mapping the Distribution of Invasive Staphylococcus aureus across Europe
Franklin Lowy discusses a new study in PLoS Medicine in which the investigators developed an interactive tool for analyzing the spatial distribution of invasive Staphylococcus aureus
Modeling the Spread of Methicillin-Resistant Staphylococcus aureus in Nursing Homes for Elderly
Methicillin-resistant Staphylococcus aureus (MRSA) is endemic in many hospital settings, including nursing homes. It is an important nosocomial pathogen that causes mortality and an economic burden to patients, hospitals, and the community. The epidemiology of the bacteria in nursing homes is both hospital- and community-like. Transmission occurs via hands of health care workers (HCWs) and direct contacts among residents during social activities. In this work, mathematical modeling in both deterministic and stochastic frameworks is used to study dissemination of MRSA among residents and HCWs, persistence and prevalence of MRSA in a population, and possible means of controlling the spread of this pathogen in nursing homes. The model predicts that: without strict screening and decolonization of colonized individuals at admission, MRSA may persist; decolonization of colonized residents, improving hand hygiene in both residents and HCWs, reducing the duration of contamination of HCWs, and decreasing the resident∶staff ratio are possible control strategies; the mean time that a resident remains susceptible since admission may be prolonged by screening and decolonization treatment in colonized individuals; in the stochastic framework, the total number of colonized residents varies and may increase when the admission of colonized residents, the duration of colonization, the average number of contacts among residents, or the average number of contacts that each resident requires from HCWs increases; an introduction of a colonized individual into an MRSA-free nursing home has a much higher probability of leading to a major outbreak taking off than an introduction of a contaminated HCW
In vitro evaluation of antibiotics' combinations for empirical therapy of suspected methicillin resistant Staphylococcus aureus severe respiratory infections
<p>Abstract</p> <p>Background</p> <p>Methicillin resistant <it>Staphylococcus aureus </it>(MRSA) is an increasingly common cause of nosocomial infections, causing severe morbidity and mortality worldwide, and accounting in some hospitals for more than 50% of all <it>S. aureus </it>diseases. Treatment of infections caused by resistant bacterial pathogens mainly relies on two therapeutic modalities: development of new antimicrobials and use of combinations of available antibiotics.</p> <p>Combinations of antibiotics used in the empiric treatment of infections with suspected methicillin resistant <it>Staphylococcus aureus </it>etiology were investigated.</p> <p>Methods</p> <p>Double (vancomycin or teicoplanin with either levofloxacin or cefotaxime) and triple (vancomycin or teicoplanin + levofloxacin + one among amikacin, ceftazidime, cefepime, imipenem, piperacillin/tazobactam) combinations were evaluated by means of checkerboard assay and time kill curves. Mutational rates of single and combined drugs at antimicrobial concentrations equal to the resistance breakpoints were also calculated.</p> <p>Results</p> <p>Vancomycin or teicoplanin + levofloxacin showed synergy in 16/50 and in 9/50 strains respectively, while vancomycin or teicoplanin + cefotaxime resulted synergic for 43/50 and 23/50 strains, respectively. Triple combinations, involving teicoplanin, levofloxacin and ceftazidime or piperacillin/tazobactam gave synergy in 20/25 strains. Teicoplanin + levofloxacin gave synergy in triple combinations more frequently than vancomycin + levofloxacin.</p> <p>For single antibiotics, mutational frequencies ranged between 10<sup>-5 </sup>and <10<sup>-9 </sup>for levofloxacin, cefotaxime, amikacin and imipenem, and <10<sup>-9 </sup>for vancomycin and teicoplanin. When tested in combinations, mutational frequencies fell below 10<sup>-9 </sup>for all the combinations.</p> <p>Conclusion</p> <p><it>In vitro </it>evidence of synergy between glycopeptides, fluoroquinolones (levofloxacin) and β-lactams and of reduction of mutational frequencies by combinations are suggestive for a potential role in empirical therapy of severe pneumonia with suspected MRSA etiology.</p
Efficient Photodynamic Therapy against Gram-Positive and Gram-Negative Bacteria Using THPTS, a Cationic Photosensitizer Excited by Infrared Wavelength
The worldwide rise in the rates of antibiotic resistance of bacteria underlines the need for alternative antibacterial agents. A promising approach to kill antibiotic-resistant bacteria uses light in combination with a photosensitizer to induce a phototoxic reaction. Concentrations of 1, 10 and 100µM of tetrahydroporphyrin-tetratosylat (THPTS) and different incubation times (30, 90 and 180min) were used to measure photodynamic efficiency against two Gram-positive strains of S.aureus (MSSA and MRSA), and two Gram-negative strains of E.coli and P.aeruginosa. We found that phototoxicity of the drug is independent of the antibiotic resistance pattern when incubated in PBS for the investigated strains. Also, an incubation with 100µM THPTS followed by illumination, yielded a 6lg (≥99.999%) decrease in the viable numbers of all bacteria strains tested, indicating that the THPTS drug has a high degree of photodynamic inactivation. We then modulated incubation time, photosensitizer concentration and monitored the effect of serum on the THPTS activity. In doing so, we established the conditions to obtain the strongest bactericidal effect. Our results suggest that this new and highly pure synthetic compound should improve the efficiency of photodynamic therapy against multiresistant bacteria and has a significant potential for clinical applications in the treatment of nosocomial infections
Methicillin-resistant Staphylococcus aureus (MRSA) in rehabilitation and chronic-care-facilities: what is the best strategy?
BACKGROUND: The risk associated with methicillin-resistant Staphylococcus aureus (MRSA) has been decreasing for several years in intensive care departments, but is now increasing in rehabilitation and chronic-care-facilities (R-CCF). The aim of this study was to use published data and our own experience to discuss the roles of screening for MRSA carriers, the type of isolation to be implemented and the efficiency of chemical decolonization. DISCUSSION: Screening identifies over 90% of patients colonised with MRSA upon admission to R-CCF versus only 50% for intensive care units. Only totally dependent patients acquire MRSA. Thus, strict geographical isolation, as opposed to "social reinsertion", is clearly of no value. However, this should not lead to the abandoning of isolation, which remains essential during the administration of care. The use of chemicals to decolonize the nose and healthy skin appeared to be of some value and the application of this procedure could make technical isolation unnecessary in a non-negligible proportion of cases. SUMMARY: Given the increase in morbidity associated with MRSA observed in numerous hospitals, the emergence of a community-acquired disease associated with these strains and the evolution of glycopeptide-resistant strains, the voluntary application of a strategy combining screening, technical isolation and chemical decolonization in R-CCF appears to be an urgent matter of priority
Transmission of highly virulent community-associated MRSA ST93 and livestock-associated MRSA ST398 between humans and pigs in Australia
Pigs have been recognised as a reservoir of livestock associated methicillin-resistant Staphylococcus aureus (LA-MRSA) in Europe, Asia and North America. However, little is known about the presence and distribution of MRSA in the Australian pig population and pig industry. This study describes the presence, distribution and molecular characteristics of the human adapted Australian CA-MRSA ST93 isolated from pigs, people, and the environment within a piggery. Isolates were subjected to antibiotic susceptibility testing, DNA microarray, whole genome sequencing, multi locus sequence typing, virulence and resistance gene characterization and phylogenetic analysis. MRSA were isolated from 60% (n = 52) of farm workers where 84% of isolates returned ST93 and the rest ST398. Of the thirty-one pig isolates tested further, an equal number of ST398 and ST93 (15 each) and one as ST30-V were identified. Four of six environmental isolates were identified as ST93 and two as ST398. This study has identified for the first time in Australia the occurrence of CA-MRSA ST93 and LA-MRSA ST398 amongst farm workers, pigs, and the farm environment. Comparative genome analysis indicates that ST398 is likely to have been introduced into Australia from Europe or North America. This study also reports the first linezolid resistant MRSA isolated in Australia
Molecular Typing and Phenotype Characterization of Methicillin-Resistant Staphylococcus aureus Isolates from Blood in Taiwan
BACKGROUND: Staphylococcus aureus causes a variety of severe infections such as bacteremia and sepsis. At present, 60-80% of S. aureus isolates from Taiwan are methicillin resistant (MRSA). It has been shown that certain MRSA clones circulate worldwide. The goals of this study were to identify MRSA clones in Taiwan and to correlate the molecular types of isolates with their phenotypes. METHODS: A total of 157 MRSA isolates from bacteremic patients were collected from nine medical centers. They were typed based on polymorphisms in agr, SCCmec, MLST, spa, and dru. Phenotypes characterized included Panton-Valentine leucocidin (pvl), inducible macrolide-lincosamide-streptogramin B resistance (MLSBi), vancomycin (VA) and daptomycin (DAP) minimal inhibitory concentrations (MIC), and superantigenic toxin gene profiles. Difference between two consecutive samples was determined by Mann-Whitney-U test, and difference between two categorical variables was determined by Fisher's exact test. RESULTS: Four major MRSA clone complexes CC1, CC5, CC8, and CC59 were found, including 4 CC1, 9 CC5, 111 CC8, and 28 CC59 isolates. These clones had the following molecular types: CC1: SCCmecIV and ST573; CC5: SCCmecII and ST5; CC8: SCCmecIII, ST239, and ST241, and CC59: SCCmecIV, SCCmecV(T), ST59, and ST338. The toxin gene profiles of these clones were CC1: sec-seg-(sei)-sell-selm-(seln)-selo; CC5: sec-seg-sei-sell-selm-(seln)-selp-tst1; CC8: sea-selk-selq, and CC59: seb-selk-selq. Most isolates with SCCmecV(T), ST59, spat437, and dru11 types were pvl(+) (13 isolates), while multidrug resistance (≥4 antimicrobials) were associated with SCCmecIII, ST239, spa t037, agrI, and dru14 (119 isolates) (p<0.001). One hundred and twenty four isolates with the following molecular types had higher VA MIC: SCCmecII and SCCmecIII; ST5, ST239, and ST241; spa t002, t037, and t421; dru4, dru10, dru12, dru13, and dru14 (p<0.05). No particular molecular types were found to be associated with MLSBi phenotype. CONCLUSIONS: Four major MRSA clone complexes were found in Taiwan. Further studies are needed to delineate the evolution of MRSA isolates
In vitro activity of ivermectin against Staphylococcus aureus clinical isolates
Background Ivermectin is an endectocide against many parasites. Though being a macrocyclic lactone, its activity against bacteria has been less known, possibly due to the fact that micromolar concentrations at tissue levels are required to achieve a therapeutic effect. Among pathogenic bacteria of major medical significance, Staphylococcus aureus cause a number of diseases in a wide variety of hosts including humans and animals. It has been attributed as one of the most pathogenic organisms. The emergence of methicillin resistance has made the treatment of S. aureus even more difficult as it is now resistant to most of the available antibiotics. Thus, search for alternate anti-staphylococcal agents requires immediate attention. Methods Twenty-one clinical isolates of S. aureus were isolated from bovine milk collected from Lahore and Faisalabad Pakistan. Different anthelmintics including levamisole, albendazole and ivermectin were tested against S. aureus to determine their minimum inhibitory concentrations. This was followed-up by growth curve analysis, spot assay and time-kill kinetics. Results The results showed that ivermectin but not levamisole or albendazole exhibited a potent anti-staphylococcal activity at the concentrations of 6.25 and 12.5 μg/ml against two isolates. Interestingly, one of the isolate was sensitive while the other was resistant to methicillin/cefoxitin. Conclusions Our novel findings indicate that ivermectin has an anti-bacterial effect against certain S. aureus isolates. However, to comprehend why ivermectin did not inhibit the growth of all Staphylococci needs further investigation. Nevertheless, we have extended the broad range of known pharmacological effects of ivermectin. As pharmacology and toxicology of ivermectin are well known, its further development as an anti-staphylococcal agent is potentially appealing
Antimicrobial susceptibility patterns and characterization of clinical isolates of Staphylococcus aureus in KwaZulu-Natal province, South Africa
BACKGROUND: Antimicrobial resistance of Staphylococcus aureus especially methicillin-resistant S. aureus (MRSA) continues to be a problem for clinicians worldwide. However, few data on the antibiotic susceptibility patterns of S. aureus isolates in South Africa have been reported and the prevalence of MRSA in the KwaZulu-Natal (KZN) province is unknown. In addition, information on the characterization of S. aureus in this province is unavailable. This study investigated the susceptibility pattern of 227 S. aureus isolates from the KZN province, South Africa. In addition, characterization of methicillin-sensitive S. aureus (MSSA) and MRSA are reported in this survey. METHODS: The in-vitro activities of 20 antibiotics against 227 consecutive non-duplicate S. aureus isolates from clinical samples in KZN province, South Africa were determined by the disk-diffusion technique. Isolates resistant to oxacillin and mupirocin were confirmed by PCR detection of the mecA and mup genes respectively. PCR-RFLP of the coagulase gene was employed in the characterization of MSSA and MRSA. RESULTS: All the isolates were susceptible to vancomycin, teicoplanin and fusidic acid, and 26.9% of isolates studied were confirmed as MRSA. More than 80% of MRSA were resistant to at least four classes of antibiotics and isolates grouped in antibiotype 8 appears to be widespread in the province. The MSSA were also susceptible to streptomycin, neomycin and minocycline, while less than 1% was resistant to chloramphenicol, ciprofloxacin, rifampicin and mupirocin. The inducible MLS(B )phenotype was detected in 10.8% of MSSA and 82% of MRSA respectively, and one MSSA and one MRSA exhibited high-level resistance to mupirocin. There was good correlation between antibiotyping and PCR-RFLP of the coagulase gene in the characterization of MRSA in antibiotypes 1, 5 and 12. CONCLUSION: In view of the high resistance rates of MRSA to gentamicin, erythromycin, clindamycin, rifampicin and trimethoprim, treatment of MRSA infections in this province with these antibacterial agents would be unreliable. There is an emerging trend of mupirocin resistance among S. aureus isolates in the province. PCR-RFLP of the coagulase gene was able to distinguish MSSA from MRSA and offers an attractive option to be considered in the rapid epidemiological analysis of S. aureus in South Africa. Continuous surveillance on resistance patterns and characterization of S. aureus in understanding new and emerging trends in South Africa is of utmost importance
- …