308 research outputs found

    Climate change promotes parasitism in a coral symbiosis.

    Get PDF
    Coastal oceans are increasingly eutrophic, warm and acidic through the addition of anthropogenic nitrogen and carbon, respectively. Among the most sensitive taxa to these changes are scleractinian corals, which engineer the most biodiverse ecosystems on Earth. Corals' sensitivity is a consequence of their evolutionary investment in symbiosis with the dinoflagellate alga, Symbiodinium. Together, the coral holobiont has dominated oligotrophic tropical marine habitats. However, warming destabilizes this association and reduces coral fitness. It has been theorized that, when reefs become warm and eutrophic, mutualistic Symbiodinium sequester more resources for their own growth, thus parasitizing their hosts of nutrition. Here, we tested the hypothesis that sub-bleaching temperature and excess nitrogen promotes symbiont parasitism by measuring respiration (costs) and the assimilation and translocation of both carbon (energy) and nitrogen (growth; both benefits) within Orbicella faveolata hosting one of two Symbiodinium phylotypes using a dual stable isotope tracer incubation at ambient (26 °C) and sub-bleaching (31 °C) temperatures under elevated nitrate. Warming to 31 °C reduced holobiont net primary productivity (NPP) by 60% due to increased respiration which decreased host %carbon by 15% with no apparent cost to the symbiont. Concurrently, Symbiodinium carbon and nitrogen assimilation increased by 14 and 32%, respectively while increasing their mitotic index by 15%, whereas hosts did not gain a proportional increase in translocated photosynthates. We conclude that the disparity in benefits and costs to both partners is evidence of symbiont parasitism in the coral symbiosis and has major implications for the resilience of coral reefs under threat of global change

    Entanglement Entropy for Singular Surfaces

    Full text link
    We study entanglement entropy for regions with a singular boundary in higher dimensions using the AdS/CFT correspondence and find that various singularities make new universal contributions. When the boundary CFT has an even spacetime dimension, we find that the entanglement entropy of a conical surface contains a term quadratic in the logarithm of the UV cut-off. In four dimensions, the coefficient of this contribution is proportional to the central charge 'c'. A conical singularity in an odd number of spacetime dimensions contributes a term proportional to the logarithm of the UV cut-off. We also study the entanglement entropy for various boundary surfaces with extended singularities. In these cases, similar universal terms may appear depending on the dimension and curvature of the singular locus.Comment: 66 pages,4 figures. Some typos are removed and a reference is adde

    The XVth World Congress of Psychiatric Genetics, October 7–11, 2007: Rapporteur summaries of oral presentations

    Full text link
    The World Congress of Psychiatric Genetics (WCPG) has become an annual event since the early 1990's sponsored by the International Society of Psychiatric Genetics (ISPG). Each year the latest published and unpublished findings are aired for discussion by representatives of the majority of research programs on this topic world-wide. The 2007 congress was held in New York City and attracted over 1000 researchers. The topics emphasized included results from whole genome association studies, the significance of copy number variation and the important contributions of epigenetic events to psychiatric disorders. There were over 20 oral sessions devoted to these and other topics of interest. Young investigator recipients of travel awards served as rapporteurs to summarize sessions and these summaries follow.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58040/1/30711_ftp.pd

    Description and validation of a Markov model of survival for individuals free of cardiovascular disease that uses Framingham risk factors

    Get PDF
    BACKGROUND: Estimation of cardiovascular disease risk is increasingly used to inform decisions on interventions, such as the use of antihypertensives and statins, or to communicate the risks of smoking. Crude 10-year cardiovascular disease risk risks may not give a realistic view of the likely impact of an intervention over a lifetime and will underestimate of the risks of smoking. A validated model of survival to act as a decision aid in the consultation may help to address these problems. This study aims to describe the development of such a model for use with people free of cardiovascular disease and evaluates its accuracy against data from a United Kingdom cohort. METHODS: A Markov cycle tree evaluated using cohort simulation was developed utilizing Framingham estimates of cardiovascular risk, 1998 United Kingdom mortality data, the relative risk for smoking related non-cardiovascular disease risk and changes in systolic blood pressure and serum total cholesterol total cholesterol with age. The model's estimates of survival at 20 years for 1391 members of the Whickham survey cohort between the ages of 35 and 65 were compared with the observed survival at 20-year follow-up. RESULTS: The model estimate for survival was 75% and the observed survival was 75.4%. The correlation between estimated and observed survival was 0.933 over 39 subgroups of the cohort stratified by estimated survival, 0.992 for the seven 5-year age bands from 35 to 64, 0.936 for the ten 10 mmHg systolic blood pressure bands between 100 mmHg and 200 mmHg, and 0.693 for the fifteen 0.5 mmol/l total cholesterol bands between 3.0 and 10.0 mmol/l. The model significantly underestimated mortality in those people with a systolic blood pressure greater than or equal to 180 mmHg (p = 0.006). The average gain in life expectancy from the elimination of cardiovascular disease risk as a cause of death was 4.0 years for all the 35 year-old men in the sample (n = 24), and 1.8 years for all the 35 year-old women in the sample (n = 32). CONCLUSIONS: This model accurately estimates 20-year survival in subjects from the Whickham cohort with a systolic blood pressure below 180 mmHg

    Benchmarking natural-language parsers for biological applications using dependency graphs

    Get PDF
    BACKGROUND: Interest is growing in the application of syntactic parsers to natural language processing problems in biology, but assessing their performance is difficult because differences in linguistic convention can falsely appear to be errors. We present a method for evaluating their accuracy using an intermediate representation based on dependency graphs, in which the semantic relationships important in most information extraction tasks are closer to the surface. We also demonstrate how this method can be easily tailored to various application-driven criteria. RESULTS: Using the GENIA corpus as a gold standard, we tested four open-source parsers which have been used in bioinformatics projects. We first present overall performance measures, and test the two leading tools, the Charniak-Lease and Bikel parsers, on subtasks tailored to reflect the requirements of a system for extracting gene expression relationships. These two tools clearly outperform the other parsers in the evaluation, and achieve accuracy levels comparable to or exceeding native dependency parsers on similar tasks in previous biological evaluations. CONCLUSION: Evaluating using dependency graphs allows parsers to be tested easily on criteria chosen according to the semantics of particular biological applications, drawing attention to important mistakes and soaking up many insignificant differences that would otherwise be reported as errors. Generating high-accuracy dependency graphs from the output of phrase-structure parsers also provides access to the more detailed syntax trees that are used in several natural-language processing techniques

    Coral Uptake of Inorganic Phosphorus and Nitrogen Negatively Affected by Simultaneous Changes in Temperature and pH

    Get PDF
    The effects of ocean acidification and elevated seawater temperature on coral calcification and photosynthesis have been extensively investigated over the last two decades, whereas they are still unknown on nutrient uptake, despite their importance for coral energetics. We therefore studied the separate and combined impacts of increases in temperature and pCO2 on phosphate, ammonium, and nitrate uptake rates by the scleractinian coral S. pistillata. Three experiments were performed, during 10 days i) at three pHT conditions (8.1, 7.8, and 7.5) and normal temperature (26°C), ii) at three temperature conditions (26°, 29°C, and 33°C) and normal pHT (8.1), and iii) at three pHT conditions (8.1, 7.8, and 7.5) and elevated temperature (33°C). After 10 days of incubation, corals had not bleached, as protein, chlorophyll, and zooxanthellae contents were the same in all treatments. However, photosynthetic rates significantly decreased at 33°C, and were further reduced for the pHT 7.5. The photosynthetic efficiency of PSII was only decreased by elevated temperature. Nutrient uptake rates were not affected by a change in pH alone. Conversely, elevated temperature (33°C) alone induced an increase in phosphate uptake but a severe decrease in nitrate and ammonium uptake rates, even leading to a release of nitrogen into seawater. Combination of high temperature (33°C) and low pHT (7.5) resulted in a significant decrease in phosphate and nitrate uptake rates compared to control corals (26°C, pHT = 8.1). These results indicate that both inorganic nitrogen and phosphorus metabolism may be negatively affected by the cumulative effects of ocean warming and acidification

    The malarial exported PFA0660w is an Hsp40 co-chaperone of PfHsp70-x

    Get PDF
    Plasmodium falciparum, the human pathogen responsible for the most dangerous malaria infection, survives and develops in mature erythrocytes through the export of proteins needed for remodelling of the host cell. Molecular chaperones of the heat shock protein (Hsp) family are prominent members of the exportome, including a number of Hsp40s and a Hsp70. PFA0660w, a type II Hsp40, has been shown to be exported and possibly form a complex with PfHsp70-x in the infected erythrocyte cytosol. However, the chaperone properties of PFA0660w and its interaction with human and parasite Hsp70s are yet to be investigated. Recombinant PFA0660w was found to exist as a monomer in solution, and was able to significantly stimulate the ATPase activity of PfHsp70-x but not that of a second plasmodial Hsp70 (PfHsp70-1) or a human Hsp70 (HSPA1A), indicating a potential specific functional partnership with PfHsp70-x. Protein binding studies in the presence and absence of ATP suggested that the interaction of PFA0660w with PfHsp70-x most likely represented a co-chaperone/chaperone interaction. Also, PFA0660w alone produced a concentrationdependent suppression of rhodanese aggregation, demonstrating its chaperone properties. Overall, we have provided the first biochemical evidence for the possible role of PFA0660w as a chaperone and as co-chaperone of PfHsp70-x. We propose that these chaperones boost the chaperone power of the infected erythrocyte, enabling successful protein trafficking and folding, and thereby making a fundamental contribution to the pathology of malaria

    Gapless spin liquid of an organic triangular compound evidenced by thermodynamic measurements

    Get PDF
    In frustrated magnetic systems, long-range ordering is forbidden and degeneracy of energy states persists, even at extremely low temperatures. Under certain conditions, these systems form an exotic quantum spin-liquid ground state, in which strongly correlated spins fluctuate in the spin lattices. Here we investigate the thermodynamic properties of an anion radical spin liquid of EtMe3Sb[Pd(dmit)2]2, where dmit represents 1,3-dithiole-2-thione-4,5-dithiolate. This compound is an organic dimer-based Mott insulator with a two-dimensional triangular lattice structure. We present distinct evidence for the formation of a gapless spin liquid by examining the T-linear heat capacity coefficient, γ , in the low-temperature heat capacity. Using comparative analyses with κ-(BEDT-TTF)2Cu2(CN)3, a generalized picture of the new spin liquid in dimer-based organic systems is discussed. We also report anomalous enhancement of γ, produced by a kind of criticality inherent to the Pd(dmit)2 phase diagram

    Prion Protein Is a Key Determinant of Alcohol Sensitivity through the Modulation of N-Methyl-D-Aspartate Receptor (NMDAR) Activity

    Get PDF
    The prion protein (PrP) is absolutely required for the development of prion diseases; nevertheless, its physiological functions in the central nervous system remain elusive. Using a combination of behavioral, electrophysiological and biochemical approaches in transgenic mouse models, we provide strong evidence for a crucial role of PrP in alcohol sensitivity. Indeed, PrP knock out (PrP−/−) mice presented a greater sensitivity to the sedative effects of EtOH compared to wild-type (wt) control mice. Conversely, compared to wt mice, those over-expressing mouse, human or hamster PrP genes presented a relative insensitivity to ethanol-induced sedation. An acute tolerance (i.e. reversion) to ethanol inhibition of N-methyl-D-aspartate (NMDA) receptor-mediated excitatory post-synaptic potentials in hippocampal slices developed slower in PrP−/− mice than in wt mice. We show that PrP is required to induce acute tolerance to ethanol by activating a Src-protein tyrosine kinase-dependent intracellular signaling pathway. In an attempt to decipher the molecular mechanisms underlying PrP-dependent ethanol effect, we looked for changes in lipid raft features in hippocampus of ethanol-treated wt mice compared to PrP−/− mice. Ethanol induced rapid and transient changes of buoyancy of lipid raft-associated proteins in hippocampus of wt but not PrP−/− mice suggesting a possible mechanistic link for PrP-dependent signal transduction. Together, our results reveal a hitherto unknown physiological role of PrP on the regulation of NMDAR activity and highlight its crucial role in synaptic functions
    • …
    corecore