61 research outputs found

    Epigenetic regulation of adult neural stem cells: implications for Alzheimer's disease.

    Get PDF
    Published onlineJournal ArticleResearch Support, Non-U.S. Gov'tReviewExperimental evidence has demonstrated that several aspects of adult neural stem cells (NSCs), including their quiescence, proliferation, fate specification and differentiation, are regulated by epigenetic mechanisms. These control the expression of specific sets of genes, often including those encoding for small non-coding RNAs, indicating a complex interplay between various epigenetic factors and cellular functions.Previous studies had indicated that in addition to the neuropathology in Alzheimer's disease (AD), plasticity-related changes are observed in brain areas with ongoing neurogenesis, like the hippocampus and subventricular zone. Given the role of stem cells e.g. in hippocampal functions like cognition, and given their potential for brain repair, we here review the epigenetic mechanisms relevant for NSCs and AD etiology. Understanding the molecular mechanisms involved in the epigenetic regulation of adult NSCs will advance our knowledge on the role of adult neurogenesis in degeneration and possibly regeneration in the AD brain.Internationale Stichting Alzheimer Onderzoek (ISAO)Netherlands Organization for Scientific Research (NWO)Maastricht University Medical Centre 

    “Keeping Moving”: factors associated with sedentary behaviour among older people recruited to an exercise promotion trial in general practice

    Get PDF
    Background Sedentary behaviour is detrimental to health, even in those who achieve recommended levels of physical activity. Efforts to increase physical activity in older people so that they reach beneficial levels have been disappointing. Reducing sedentary behaviour may improve health and be less demanding of older people, but it is not clear how to achieve this. We explored the characteristics of sedentary older people enrolled into an exercise promotion trial to gain insights about those who were sedentary but wanted to increase activity. Method Participants in the ProAct65+ trial (2009–2013) were categorised as sedentary or not using a self-report questionnaire. Demographic data, health status, self-rated function and physical test performance were examined for each group. 1104 participants aged 65 & over were included in the secondary analysis of trial data from older people recruited via general practice. Results were analysed using logistic regression with stepwise backward elimination. Results Three hundred eighty seven (35 %) of the study sample were characterised as sedentary. The likelihood of being categorised as sedentary increased with an abnormal BMI (25 kg/m2) (Odds Ratio 1.740, CI 1.248–2.425), ever smoking (OR 1.420, CI 1.042–1.934) and with every additional medication prescribed (OR 1.069, CI 1.016–1.124). Participants reporting better self-rated physical health (SF-12) were less likely to be sedentary; (OR 0.961, 0.936–0.987). Participants’ sedentary behaviour was not associated with gender, age, income, education, falls, functional fitness, quality of life or number of co-morbidities. Conclusion Some sedentary older adults will respond positively to an invitation to join an exercise study. Those who did so in this study had poor self-rated health, abnormal BMI, a history of smoking, and multiple medication use, and are therefore likely to benefit from an exercise intervention

    Flexibility of a biotinylated ligand in artificial metalloenzymes based on streptavidin—an insight from molecular dynamics simulations with classical and ab initio force fields

    Get PDF
    In the field of enzymatic catalysis, creating activity from a non catalytic scaffold is a daunting task. Introduction of a catalytically active moiety within a protein scaffold offers an attractive means for the creation of artificial metalloenzymes. With this goal in mind, introduction of a biotinylated d6-piano-stool complex within streptavidin (SAV) affords enantioselective artificial transfer-hydrogenases for the reduction of prochiral ketones. Based on an X-ray crystal structure of a highly selective hybrid catalyst, displaying significant disorder around the biotinylated catalyst [η6-(p-cymene)Ru(Biot-p-L)Cl], we report on molecular dynamics simulations to shed light on the protein–cofactor interactions and contacts. The results of these simulations with classical force field indicate that the SAV-biotin and SAV-catalyst complexes are more stable than ligand-free SAV. The point mutations introduced did not affect significantly the overall behavior of SAV and, unexpectedly, the P64G substitution did not provide additional flexibility to the protein scaffold. The metal-cofactor proved to be conformationally flexible, and the S112K or P64G mutants proved to enhance this effect in the most pronounced way. The network of intermolecular hydrogen bonds is efficient at stabilizing the position of biotin, but much less at fixing the conformation of an extended biotinylated ligand. This leads to a relative conformational freedom of the metal-cofactor, and a poorly localized catalytic metal moiety. MD calculations with ab initio potential function suggest that the hydrogen bonds alone are not sufficient factors for full stabilization of the biotin. The hydrophobic biotin-binding pocket (and generally protein scaffold) maintains the hydrogen bonds between biotin and protein

    Control of adult neurogenesis by programmed cell death in the mammalian brain

    Full text link

    Historical Archaeologies of the American West

    Full text link
    corecore