14 research outputs found

    Chimerism and outcomes after allogeneic hematopoietic cell transplantation following nonmyeloablative conditioning

    Full text link
    Allogeneic hematopoietic cell transplantation ( HCT) following nonmyeloablative conditioning has been extensively evaluated in patients with hematologic malignancies who are ineligible for conventional HCT because of age or medical comorbidities. Nonmyeloablative regimens have led to an initial state of mixed hematopoietic chimerism defined as coexistence of donor- and host-derived hematopoiesis. While nonmyeloablative regimens have been associated with reduced regimen-related toxicities in comparison with conventional myeloablative conditioning, graft rejection, graft-versus-host disease ( GVHD), and disease progression have remained significant challenges. In this article, after briefly introducing current techniques for chimerism assessment, we describe factors affecting donor chimerism levels after nonmyeloablative conditioning, and then review data suggesting that chimerism assessment early after HCT might help identify patients at risk for graft rejection, GVHD and relapse/progression. Finally, we discuss how these observations have opened the way to further research protocols evaluating manipulation of postgrafting immunosuppression, and/or infusion of donor immune cells

    Differential sensitivity of T lymphocytes and hematopoietic precursor cells to photochemotherapy with 8-methoxypsoralen and ultraviolet A light.

    No full text
    International audienceThe combination of 8-methoxypsoralen (8-MOP) and long wave ultraviolet radiation (UV-A) has immunomodulatory effects and might abolish both graft-vs-host and host-vs-graft reactions after allogeneic hematopoietic stem cell transplantation. In the present study, we have confirmed the sensitivity of T lymphocytes to 8-MOP treatment plus UV-A exposure as evidenced by the abrogation of the alloreactivity in mixed lymphocyte cultures as well as the inhibition of the response to phytohemagglutinin A. However, the clonogenic capacity of the bone marrow hematopoietic progenitors was inhibited with UV-A doses lower than the doses needed to inhibit T-lymphocytes alloreactivity. Moreover, long-term bone marrow cultures showed that 8-MOP plus UV-A treatment had detrimental effects on the more immature bone marrow stem cells. These data were confirmed when murine bone marrow graft was treated with 8-MOP, exposed to UV-A, then transplanted into semiallogeneic recipient mice. The treated cells could not maintain their clonogenic capacity in vivo resulting in death of all animals. Taken together, these data show that ex vivo 8-MOP plus UV-A treatment of the marrow graft cannot be used to prevent post-bone marrow transplantation alloreactivity
    corecore