12 research outputs found

    Instantaneous and time-averaged flow fields of multiple vortices in the tip region of a ducted propulsor

    Full text link
    The instantaneous and time-averaged flow fields in the tip region of a ducted marine propulsor are examined. In this flow, a primary tip-leakage vortex interacts with a secondary, co-rotating trailing edge vortex and other co- and counter-rotating vorticity found in the blade wake. Planar particle imaging velocimetry (PIV) is used to examine the flow in a plane approximately perpendicular to the mean axis of the primary vortex. An identification procedure is used to characterize multiple regions of compact vorticity in the flow fields as series of Gaussian vortices. Significant differences are found between the vortex properties from the time-averaged flow fields and the average vortex properties identified in the instantaneous flow fields. Variability in the vortical flow field results from spatial wandering of the vortices, correlated fluctuations of the vortex strength and core size, and both correlated and uncorrelated fluctuations in the relative positions of the vortices. This variability leads to pseudo-turbulent velocity fluctuations. Corrections for some of this variability are performed on the instantaneous flow fields. The resulting processed flow fields reveal a significant increase in flow variability in a region relatively far downstream of the blade trailing edge, a phenomenon that is masked through the process of simple averaging. This increased flow variability is also accompanied by the inception of discrete vortex cavitation bubbles, which is an unexpected result, since the mean flow pressures in the region of inception are much higher than the vapor pressure of the liquid. This suggests that unresolved fine-scale vortex interactions and stretching may be occurring in the region of increased flow variability.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47076/1/348_2005_Article_938.pd

    Pre-Bilaterian Origins of the Hox Cluster and the Hox Code: Evidence from the Sea Anemone, Nematostella vectensis

    Get PDF
    BACKGROUND: Hox genes were critical to many morphological innovations of bilaterian animals. However, early Hox evolution remains obscure. Phylogenetic, developmental, and genomic analyses on the cnidarian sea anemone Nematostella vectensis challenge recent claims that the Hox code is a bilaterian invention and that no “true” Hox genes exist in the phylum Cnidaria. METHODOLOGY/PRINCIPAL FINDINGS: Phylogenetic analyses of 18 Hox-related genes from Nematostella identify putative Hox1, Hox2, and Hox9+ genes. Statistical comparisons among competing hypotheses bolster these findings, including an explicit consideration of the gene losses implied by alternate topologies. In situ hybridization studies of 20 Hox-related genes reveal that multiple Hox genes are expressed in distinct regions along the primary body axis, supporting the existence of a pre-bilaterian Hox code. Additionally, several Hox genes are expressed in nested domains along the secondary body axis, suggesting a role in “dorsoventral” patterning. CONCLUSIONS/SIGNIFICANCE: A cluster of anterior and posterior Hox genes, as well as ParaHox cluster of genes evolved prior to the cnidarian-bilaterian split. There is evidence to suggest that these clusters were formed from a series of tandem gene duplication events and played a role in patterning both the primary and secondary body axes in a bilaterally symmetrical common ancestor. Cnidarians and bilaterians shared a common ancestor some 570 to 700 million years ago, and as such, are derived from a common body plan. Our work reveals several conserved genetic components that are found in both of these diverse lineages. This finding is consistent with the hypothesis that a set of developmental rules established in the common ancestor of cnidarians and bilaterians is still at work today

    Characterization of a Gene Family Encoding SEA (Sea-urchin Sperm Protein, Enterokinase and Agrin)-Domain Proteins with Lectin-Like and Heme-Binding Properties from Schistosoma japonicum

    Get PDF
    BackgroundWe previously identified a novel gene family dispersed in the genome of Schistosoma japonicum by retrotransposon-mediated gene duplication mechanism. Although many transcripts were identified, no homolog was readily identifiable from sequence information.Methodology/Principal FindingsHere, we utilized structural homology modeling and biochemical methods to identify remote homologs, and characterized the gene products as SEA (sea-urchin sperm protein, enterokinase and agrin)-domain containing proteins. A common extracellular domain in this family was structurally similar to SEA-domain. SEA-domain is primarily a structural domain, known to assist or regulate binding to glycans. Recombinant proteins from three members of this gene family specifically interacted with glycosaminoglycans with high affinity, with potential implication in ligand acquisition and immune evasion. Similar approach was used to identify a heme-binding site on the SEA-domain. The heme-binding mode showed heme molecule inserted into a hydrophobic pocket, with heme iron putatively coordinated to two histidine axial ligands. Heme-binding properties were confirmed using biochemical assays and UV-visible absorption spectroscopy, which showed high affinity heme-binding (KD = 1.605×10?6 M) and cognate spectroscopic attributes of hexa-coordinated heme iron. The native proteins were oligomers, antigenic, and are localized on adult worm teguments and gastrodermis; major host-parasite interfaces and site for heme detoxification and acquisition.ConclusionsThe results suggest potential role, at least in the nucleation step of heme crystallization (hemozoin formation), and as receptors for heme uptake. Survival strategies exploited by parasites, including heme homeostasis mechanism in hemoparasites, are paramount for successful parasitism. Thus, assessing prospects for application in disease intervention is warranted

    Mitotic inhibition of clathrin-mediated endocytosis

    No full text
    Endocytosis and mitosis are fundamental processes in a cell’s life. Nearly 50 years of research suggest that these processes are linked and that endocytosis is shut down as cells undergo the early stages of mitosis. Precisely how this occurs at the molecular level is an open question. In this review, we summarize the early work characterizing the inhibition of clathrin-mediated endocytosis and discuss recent challenges to this established concept. We also set out four proposed mechanisms for the inhibition: mitotic phosphorylation of endocytic proteins, altered membrane tension, moonlighting of endocytic proteins, and a mitotic spindle-dependent mechanism. Finally, we speculate on the functional consequences of endocytic shutdown during mitosis and where an understanding of the mechanism of inhibition will lead us in the future

    Fat-Dachsous Signaling Coordinates Cartilage Differentiation and Polarity during Craniofacial Development

    No full text
    Organogenesis requires coordinated regulation of cellular differentiation and morphogenesis. Cartilage cells in the vertebrate skeleton form polarized stacks, which drive the elongation and shaping of skeletal primordia. Here we show that an atypical cadherin, Fat3, and its partner Dachsous-2 (Dchs2), control polarized cell-cell intercalation of cartilage precursors during craniofacial development. In zebrafish embryos deficient in Fat3 or Dchs2, chondrocytes fail to stack and misregulate expression of sox9a. Similar morphogenetic defects occur in rerea/atr2a-/- mutants, and Fat3 binds REREa, consistent with a model in which Fat3, Dchs2 and REREa interact to control polarized cell-cell intercalation and simultaneously control differentiation through Sox9. Chimaeric analyses support such a model, and reveal long-range influences of all three factors, consistent with the activation of a secondary signal that regulates polarized cell-cell intercalation. This coordinates the spatial and temporal morphogenesis of chondrocytes to shape skeletal primordia and defects in these processes underlie human skeletal malformations. Similar links between cell polarity and differentiation mechanisms are also likely to control organ formation in other contexts

    Case-Based Knowledge and Ethics Education: Improving Learning and Transfer Through Emotionally Rich Cases

    No full text
    Case-based instruction is a stable feature of ethics education, however, little is known about the attributes of the cases that make them effective. Emotions are an inherent part of ethical decision-making and one source of information actively stored in case-based knowledge, making them an attribute of cases that likely facilitates case-based learning. Emotions also make cases more realistic, an essential component for effective case-based instruction. The purpose of this study was to investigate the influence of emotional case content, and complementary socio-relational case content, on case-based knowledge acquisition and transfer on future ethical decision-making tasks. Study findings suggest that emotional case content stimulates retention of cases and facilitates transfer of ethical decision-making principles demonstrated in cases
    corecore