64 research outputs found
Elucidating the selenium and arsenic metabolic pathways following exposure to the non-hyperaccumulating Chlorophytum comosum, spider plant
Although many studies have investigated the metabolism of selenium and arsenic in hyperaccumulating plants for phytoremediation purposes, few have explored non-hyperaccumulating plants as a model for general contaminant exposure to plants. In addition, the result of simultaneous supplementation with selenium and arsenic has not been investigated in plants. In this study, Chlorophytum comosum, commonly known as the spider plant, was used to investigate the metabolism of selenium and arsenic after single and simultaneous supplementation. Size exclusion and ion-pairing reversed phase liquid chromatography were coupled to an inductively coupled plasma mass spectrometer to obtain putative metabolic information of the selenium and arsenic species in C. comosum after a mild aqueous extraction. The chromatographic results depict that selenium and arsenic species were sequestered in the roots and generally conserved upon translocation to the leaves. The data suggest that selenium was directly absorbed by C. comosum roots when supplemented with SeVI, but a combination of passive and direct absorption occurred when supplemented with SeIV due to the partial oxidation of SeIV to SeVI in the rhizosphere. Higher molecular weight selenium species were more prevalent in the roots of plants supplemented with SeIV, but in the leaves of plants supplemented with SeVI due to an increased translocation rate. When supplemented as AsIII, arsenic is proposed to be passively absorbed as AsIII and partially oxidized to AsV in the plant root. Although total elemental analysis demonstrates a selenium and arsenic antagonism, a compound containing selenium and arsenic was not present in the general aqueous extract of the plant
Metal (Ag, Cd, Cu, Ni, Tl, and Zn) Binding to Cytosolic Biomolecules in Field-Collected Larvae of the Insect Chaoborus
International audienceWe characterized the biomolecules involved in handling cytosolic metals in larvae of the phantom midge (Chaoborus) collected from five mining-impacted lakes by determining the distribution of Ag, Cd, Cu, Ni, Tl, and Zn among pools of various molecular weights (HMW: high molecular weight, \textgreater670-40 kDa; MMW: medium molecular weight, 40-\textless1.3 kDa; LMW: low molecular weight, \textless1.3 kDa). Appreciable concentrations of nonessential metals were found in the potentially metal-sensitive HMW (Ag and Ni) and LMW (Tl) pools, whereas the MMW pool, which includes metallothioneins (MTs) and metallothionein-like proteins and peptides (MTLPs), appears to be involved in Ag and Cd detoxification. Higher-resolution fractionation of the heat-stable protein (HSP) fraction revealed further differences in the partitioning of nonessential metals (i.e., Ag = Cd â Ni â Tl). These results provide unprecedented details about the metal-handling strategies employed by a metal-tolerant, freshwater animal in a field situation. © 2016 American Chemical Society
Subcellular fractionation and chemical speciation of uranium to elucidate its fate in gills and hepatopancreas of crayfish Procambarus clarkii
International audienceKnowledge of the organ and subcellular distribution of metals in organisms is fundamental for the understanding of their uptake, storage, elimination and toxicity. Detoxification via MTLP and MRG formation and chelation by some proteins are necessary to better assess the metal toxic fraction in aquatic organisms. This work focused on uranium, natural element mainly used in nuclear industry, and its subcellular fractionation and chemical speciation to elucidate its accumulation pattern in gills and hepatopancreas of crayfish Procambarus clarkii, key organs of uptake and detoxification, respectively. Crayfish waterborne exposure was performed during 4 and 10d at 0, 30, 600 and 4000ΌgUL-1. After tissue dissection, uranium subcellular fractionation was performed by successive ultracentrifugations. SEC-ICP MS was used to study uranium speciation in cytosolic fraction. The uranium subcellular partitioning patterns varied according to the target organ studied and its biological function in the organism. The cytosolic fraction accounted for 13-30% of the total uranium amount in gills and 35-75% in hepatopancreas. The uranium fraction coeluting with MTLPs in gills and hepatopancreas cytosols showed that roughly 55% of uranium remained non-detoxified and thus potentially toxic in the cytosol. Furthermore, the sum of uranium amount in organelle fractions and in the non-detoxified part of cytosol, possibly equivalent to available fraction, accounted for 20% (gills) and 57% (hepatopancreas) of the total uranium. Finally, the SEC-ICP MS analysis provided information on potential competition of U for biomolecules similar than the ones involved in endogenous essential metal (Fe, Cu) chelation. © 2012 Elsevier Ltd
Non-denaturating isoelectric focusing gel electrophoresis for uranium-protein complexes quantitative analysis with LA-ICP MS
International audienceA non-denaturating isoelectric focusing (ND-IEF) gel electrophoresis protocol has been developed to study and identify uranium (U)-protein complexes with laser ablation-inductively coupled plasma mass spectrometry (LA-ICP MS) and electrospray ionization mass spectrometry (ESI-MS). The ND-IEF-LA-ICP MS methodology set-up was initiated using in vitro U-protein complex standards (i.e., U-bovine serum albumin and U-transferrin) allowing the assessment of U recovery to 64.4 ± 0.4 %. This methodology enabled the quantification of U-protein complexes at 9.03 ± 0.23, 15.27 ± 0.36, and 177.31 ± 25.51 nmol U L-1 in digestive gland cytosols of the crayfish, Procambarus clarkii, exposed respectively to 0, 0.12, and 2.5 Όmol of waterborne depleted U L-1 during 10 days. ND-IEF-LA-ICP MS limit of detection was 19.3 pmol U L-1. Elemental ICP MS signals obtained both in ND-IEF electropherograms and in size exclusion chromatograms of in vivo U-protein complexes revealed interactions between U- and Fe- and Cu-proteins. Moreover, three proteins (hemocyanin, pseudohemocyanin-2, and arginine kinase) out of 42 were identified as potential uranium targets in waterborne-exposed crayfish cytosols by microbore reversed phase chromatography coupled to molecular mass spectrometry (ΌRPC-ESI-MS/MS) after ND-IEF separation. [Figure not available: see fulltext.] © 2013 Springer-Verlag Berlin Heidelberg
Development of a non-denaturing 2D gel electrophoresis protocol for screening in vivo uranium-protein targets in Procambarus clarkii with laser ablation ICP MS followed by protein identification by HPLC-Orbitrap MS
International audienceLimited knowledge about in vivo non-covalent uranium (U)-protein complexes is largely due to the lack of appropriate analytical methodology. Here, a method for screening and identifying the molecular targets of U was developed. The approach was based on non-denaturing 1D and 2D gel electrophoresis (ND-PAGE and ND-2D-PAGE (using ND-IEF as first dimension previously described)) in conjunction with laser ablation inductively coupled plasma mass spectrometry (LA-ICP MS) for the detection of U-containing proteins. The proteins were then identified by Όbore HPLC-Orbitrap MS/MS. The method was applied to the analysis of cytosol of hepatopancreas (HP) of a model U-bioaccumulating organism (Procambarus clarkii). The imaging of uranium in 2D gels revealed the presence of 11 U-containing protein spots. Six protein candidates (i.e. ferritin, glyceraldehyde-3-phosphate dehydrogenase, triosephosphate isomerase, cytosolic manganese superoxide dismutase (Mn-SOD), glutathione S transferase D1 and H3 histone family protein) were then identified by matching with the data base of crustacea Decapoda species (e.g. crayfish). Among them, ferritin was the most important one. This strategy is expected to provide an insight into U toxicology and metabolism. © 2014 Elsevier B.V. All rights reserved
Development of non-denaturing off-gel isoelectric focusing for the separation of uranium-protein complexes in fish
International audienceAn off-gel non-denaturing isoelectric focusing (IEF) method was developed to separate uranium-biomolecule complexes from biological samples as a first step in a multidimensional metalloproteomic approach. Analysis of a synthetic uranium-bovine serum albumin complex demonstrated the focusing ability of the liquid-phase IEF method and the preservation of most of the uranium-protein interactions. The developed method was applied to gill cytosol prepared from zebrafish (Danio rerio) exposed to depleted uranium. The results were compared in terms of resolution, recovery, and protein identities with those obtained by in-gel IEF using an immobilized pH gradient gel strip. © 2014 Springer-Verlag Berlin Heidelberg
- âŠ