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Abstract

Background: Exposomics is the cutting-edge concept of screening the environmental risk factors for disease. In the
novel “top-down” approach, we estimate the molecular exposome by measuring all body fluid analytes in a
case-controlled study. However, to detect diverse pollutants, a sufficient sample size and multiple analytical
methods are required. This may lead to dramatically increased costs and research workload.

Methods: To help reduce complexity, we suggest a sample pooling strategy along with a scheme for combining
both general unknown or multi-targeted screening with targeted analysis. The sample pooling method was tested
using computer simulations.

Results: By comprehensively analysis of pooled samples, it is possible to identify environmental risk factors. Factors
are initially screened in the pooled case and control population samples, then in the randomized grouped and
pooled case and control subpopulation samples. In the sample grouping, five or more pools were suggested for
groups having 30 individuals per pool.

Conclusions: This study suggests that sample pooling is a useful strategy for exposomics research, which provides
a hypothesis-free method for pollutant risk screening.

Keywords: Exposome, Exposure biomarker, Metabolome, Effect biomarker, Case-control study, Environmental
pollutants, Pooled sample
Introduction
An estimated 70 to 90 percent of risk factors associated
with chronic diseases are thought to arise from individuals’
exposure to environmental hazards [1-3]. This drastic con-
nection raises interest in analyzing ubiquitous environmen-
tal risk factors which collectively constitute the “exposome”
[4], a concept first introduced by Wild [6] and later advo-
cated by Rappaport [4,7]. There is particular interest in ana-
lyzing the role of chemical pollutants in epidemiological
studies [5]. Chemical pollutant exposomics thus provides
an approach to systematically assess pollutant risk for de-
fined health outcomes in a given population.
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In a so-called “top-down” strategy [4,7] all blood analytes
including both small endogenous and exogenous molecules
can be clustered into one of three groups: environmental
chemical pollutants and their metabolic residuals i.e.,
chemical pollutants’ exposome, the blood metabolome
response to chemical pollutant exposure, and response
to other environmental risk factors such as noise, radi-
ation etc. The goal of “top-down” exposomics is to identify
biological analytes (i.e., biomarkers) relevant for a defined
outcome or disease. Both environmental pollutants and
endogenous metabolome need to be considered, although
some analytes are sometimes confounded factors in the
theory (for example, environmental pollutants and their
metabolomic responses in biology).
The methodology discussed in this study majorly fo-

cuses on the broad analysis of environmental pollutants
and their metabolites in case-control samples. We propose
that the chemical pollutant exposome may be screened in
a similar way as in disease-oriented metabolomics analysis
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[8]. Furthermore, it may aid in the development of system-
atic biological models for assessing and illustrating the risk
and metabolic impact associated with the exogenous
exposome [9]. Lastly, we show that exposure to arsenic in
males is linked to oligozoospermia via analysis of pertinent
metabolomic biomarkers [10].
Quantitative assessment of the risks associated to pol-

lutant exposure [7,11] can be challenging. For instance,
molecular epidemiology usually requires large sample
numbers in order to verify the hypothesized relationships.
Furthermore, bio-monitoring of environmental pollutants
is sometimes hampered by their diverse nature in necessi-
tating a set of integrated methods [12,13]. In addition,
limited sample volume makes multiple measurements
on individual samples difficult or impossible. Consid-
ered together, the requirement of large sample size and
multiple analyses for each sample proves costly and
labor intensive when working with human data. To
help overcome these challenges, we propose a sample
pooling strategy for molecular exposomics, in which
fewer, but larger volume pooled samples are analyzed
with the tradeoff losses of the signatures from individual
observations in the case-control study.

Chemical oriented exposomics requires an integrated
sample matrix
Bio-monitoring analysis following chemical exposure is
commonly obtained via chemical-oriented targeted mea-
surements. When xenobiotics enter the body, they either
accumulate, or are processed metabolically and excreted.
Therefore, analytes employed as biomarkers for monitoring
could be either parental compounds, their metabolites or
their conjugated derivatives with endogenous molecules via
enzymatically catalyzed transformations. Generally, non-
polar, lipid-soluble forms of chemicals will be metabolized
into polar, water-soluble forms and excreted in bile and
urine. It is possible to group target pollutants into four
families according to various physicochemical properties,
as shown in Table 1 [12,13]. These families are:

1. Persistent organic pollutants (POPs), which tend to
accumulate in fatty tissues and redistribute among
Table 1 Samples and integration of analytical methods for ch

Sample types Urinary matrix

Species Free form Conjugated form

Pollutant Metal or
metalloid

Mercapturic acid Glucuronic acid Sulfate

Techniques ICP-MS UPLC-HRMS(CNL MS/MS)

Analysis
approach

1 2 3 4

CNL: constant neutral loss; GC: gas chromatography; HAS: human serum albumin; P
ICP: inductively coupled plasma; MS: mass spectrometer; SIM: Selected ion monitori
liquid chromatography.
the other parts of the body via blood as a transport
vector. These are usually measured by GC-MS
(or HRGC-HRMS) with the exception of some
perfluorinated compounds.

2. Readily degradable compounds, which can readily
transform to their metabolites through phase I
reactions and further on partly conjugate with
endogenous molecules (e.g., glucuronate, sulfate,
mercapturic acid ester, acetyl ester, and so on)
through phase II reactions to be easily discharged in
urine, bile and sweat. These are normally measured
using LC-MS techniques.

3. Accumulated inorganic pollutants, which may be
deposited in the kidney (such as cadmium) or bone
(such as lead), and which are commonly measured
by LC-ICP-MS.

4. Non-accumulating inorganic pollutants such as
arsenic, commonly measured by LC-ICP-MS.

Pollutants which are more efficiently metabolized ac-
cumulate in urine, and urinary bio-monitoring provides
a suitable approach for assessing their internal exposure
doses. However, blood samples are still usually preferred
for monitoring most persistent pollutants. Although many
other types of human samples can be used to ascertain
pollutant residues [12,13], blood and urine are the two
most viable due to sampling difficulty, analyte enrichment,
and sample preparation complexity arising in the bio-
monitoring of other tissue samples types.
To systematically assess the chemical pollutants expo-

some, it is necessary to employ a general, untargeted
screening analysis. This can be followed by a targeted ana-
lysis based on initial findings from the pre-screening. For
example, a screening analysis for pollutants could be
addressed by using approaches such as adductomics for
characterizing electrophilic chemicals [14], whereas multi-
targeted pollutants analysis could run on priority lists sug-
gested by the US EPA [15] or European Commission [16].
Since untargeted screening analysis usually has a worse
sensitivity than commonly used targeted analysis, it is ne-
cessary to utilize pollutant enriched matrices in order to
trace environmental contamination levels. Although blood
emical oriented instrumental measurement

Blood matrix

Protein conjugated form Free POPs

Acetyl Metal or metalloid HSA-Cys34 Lipophilic
POPs

Perfluorinated
compounds

ICP-MS UPLC-HRMS
(SRM MS/MS)

GC-SIM-MS LC-MS/MS

5 6 7 8 9

OPs: persistent organic pollutants; HRMS: high resolution mass spectrometer;
ng; SRM: Selected reaction monitoring; UPLC: ultra performance
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is suitable for the measurement of a diverse range of
pollutants [12,13], pollutant metabolites enriched in
urine are usually less abundant than in blood, render-
ing urine complementary to blood for comprehensive
exposome analysis.

Chemical-orientated exposomics requires an integrated
analytical approach
Complementary techniques are also required for screening
the diverse chemicals in urine and blood (Table 1). Usually,
investigations of the chemical exposome are based on the
different types of mass spectrometers [17-19]. For targeted
and/or untargeted detection of various trace level com-
pounds, high throughput and sensitive mass spectrometry
(MS) techniques, such as high resolution MS (HRMS),
time-of-flight MS (TOF-MS), and Orbitrap MS have been
employed. At present, the coupling of different chromato-
graphic separations by various MS with different ionization
techniques provides the most sensitive and specific plat-
form for coping with the wide variety of molecules present
in human tissues. For example, in a common configuration,
gas chromatography (GC) is used for the separation of
thermally stable, volatile and less polar molecules, while
liquid chromatography (LC) is used for the separation of
thermally labile, non-volatile, more polar chemicals. Lastly,
at least three different ionization sources are typically
required: electron impact (EI) for volatile or semi-volatile
organic pollutants, electrospray ionization (ESI) for readily
ionizable water-soluble polar pollutants, and inductively
coupled plasma (ICP) for inorganic pollutants.
To analyze different types of chemicals, multiple ana-

lyses of the same samples are also generally required. For
instance, POPs such as PCBs and PBDEs can be analyzed
by HRGC-HRMS at least 50 μL blood without a complex
sample cleanup procedure [20], whereas, another 50 μL
blood might be investigated for perfluorinated compounds
by LC-ESI-MS [21]. One integration scheme for dealing
with systemic measurement is proposed in Table 1. By
applying well-developed omics approaches to the task
of biomarker mining [22,23] it is possible to extricate
risk factors from exposome data.
As discussed earlier, measurements of individual samples

in an exposomic study for a large population results not
only in an increased analytical workload, but can also
rapidly become prohibitively expensive. Additionally, to
profile and quantify the chemical exposome in a case-
control study, large sample volumes are required from
participants (typically blood, urine or both), in order
to facilitate multiple measurements. In a typical bio-
monitoring study, 2-5 mL of blood and 2-10 mL of
spot urine are collected; however such a small sample
volume may not be sufficient to screen for all pollutants.
Furthermore, collection of larger sample volumes may
lead to decreased study participation. The sample pooling
strategy suggested in this study is designed to help mitigate
these problems.

Preliminary exposome analysis using pooled
population samples
For disease-oriented exposome analysis, we suggest pooling
samples separately for case and control populations.
Equal fractions of individual samples are mixed from
each population separately, and afterwards qualitative
and semi-quantitative screening of the composed samples
can be conducted. To adjust for potentially confounding
factors such as sex, age or race, we also advocate sample
stratification before pooling [24]. Sample pooling has the
advantage that: (1) sample volumes are large enough for
multiple measurements, and (2) analytical workload
can be greatly reduced. Large sample volumes allow mea-
surements to be repeated 6-10 times, which provides the
power to demonstrate statistical significance of the analyt-
ical variation of the mean value [25-27]. In addition, large
sample volumes are suitable for a wide range of analytes
measurement by using the different methodologies.
However, while pooled samples facilitate the robust ana-

lysis of diverse chemical analytes, only population means
(μcase and μcontrol) are available following such analysis
[25-28]. In other words, among the two sources of vari-
ation, only the between-measurement analytical variation
but the between-subject biological variation is available.
So analyte distributions in the case and control samples
are forfeited, including the variances of (σ2case and σ2control);
therefore, the results compromise the comparison between
the case and control [28]. Although less straight-forward
than for unpooled samples, one can nonetheless estimate
analytical variation by performing at least 6 repeated mea-
surements the blood or urine samples. Importantly, using
pooled samples, it is still possible to compute the pop-
ulations mean ratio (μcase / μcontrol) or fold change (FC)
between case and control, a common measure for estab-
lishing differences in analyte concentration. Furthermore,
as with gene microarray analysis and metabolomics ana-
lysis, FCs can be used for establishing the references or cut-
offs [23]. Because pooled samples are based on diseases, the
preliminary pollutant screening may directly link the
chemicals to their risks.

Primary exposome analysis using pooled
subpopulation samples
The inter-subpopulation variance analysis of the means
of pooled subpopulation samples could augment disease-
oriented analyte screening. It stands to reason that if there
is a significant difference of an analyte X between case
and control populations, there should also be a significant
difference in the constitutive subpopulations.
Randomized grouping the individual samples is the funda-

mental strategy in the preparation of pooled subpopulation



Figure 1 When the random grouping numbers of pools risen
to three, the frequency of non-significant difference between
the case and control data with normal distributions reached
down to the value of that the difference calculated by individual
data*. The pool numbers (i.e., numbers of pools in x-axis) was set as
2, 3, 4, and 5 and coded as G2, G3, G4, and G5; 100 times random
grouping was applied to the 200 artificial data with normal
distributions for the case and control populations, respectively; the
means of the case are 1.0, 1.4, 1.9, 2.9 and 5.6-folds of the control
and coded as D5, D4, D3, D2 and D1, respectively. *For the upper
mentioned normal distribution data, calculated differences by using
three random pool means of the case and control, respectively,
should be the same as by using the individual data.

Figure 2 When the random grouping numbers of pools risen
to five, the frequency of non-significant difference between the
case and control data with log-normal distributions reached
down to the value of that the difference calculated by individual
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samples. According to the general central limit theorem, ir-
respective of the true distribution of an analyte X in the
population, the means of the sampled subpopulations tend
to a normal distribution as the number of sample pools in-
creased to five and above [27]. Thus, adequate numbers of
samples per pool and adequate numbers of sample pools
must be taken into consideration during study design [28].
For example, a population of 300 individuals evenly
split into case and control subpopulations can be used
to construct 150 case individuals and 150 control sam-
ples using 30 samples per pool. In any case, subpopula-
tions are assumed to exhibit the same distribution
patterns as the unpooled populations. The means of
the pooled samples (i.e., �xcase;k and �xcontrol;k ; where k is
the pool number) and the inter-subpopulation variances
(i.e., s2subp;case and s2subp;control) can be calculated by using for-

mula (1). The pooled case and control sample means are
normallz distributed, and the hypothesis of differing sam-
ple mean can be tested by using the t-Test.

s2subp ¼
1
k

Xk

i¼1

�xi−μð Þ2 ð1Þ

Since subpopulations’ means and their inter-subpopu-
lation variances can be measured in a cost-efficient man-
ner, the sample pooling technique has been proposed for
contaminant biomonitoring [26]. Although statistically
significant differences in sample means between case and
control can be calculated using pooled samples, statistical
sensitivity to detect differences may still decrease without
individual variations. Therefore, pooled data have as a
tradeoff lower sensitivity compared to individual data.
However, if the numbers of pools are increased, the
sensitivity of case-control differences calculated using
subpopulation means would increase to the sensitivity
calculated using individual data. Ultimately, it is a
matter of finding an adequate balance between the
number of sample pools and the required precision.
To investigate this interdependency more thoroughly,
we conducted simulations using data derived from a
mathematic model (artificial data), and also applied the
methods to data obtained from the measurement of urin-
ary arsenic.
data*. The pool numbers (i.e., numbers of pools in x-axis) was set as
2, 3, 4, and 5 and coded as G2, G3, G4, and G5; 100 times random
grouping was applied to the 200 artificial data with log-normal
distributions for the case and control populations, respectively; the
means of the case are 1.1, 1.6, 2.3, 4.9 and 6.8-folds of the control;
the means of the case are 1.1, 1.6, 2.3, 4.9 and 6.8-folds of the
control and coded as D5, D4, D3, D2 and D1, respectively. *For the
upper mentioned log-normal distribution data, calculated differences
by using five random pool means of the case and control, respectively,
should be close to by using the individual data.
Simulation sample pooling strategy for case-control
comparison artificial data
In order to assess sensitivities, 200 data points each for
case and control were generated using either normal or
log-normal distributions, according to formulae F2-1,
F2-2, F3-1, F3-2, for control normal, case normal, control
log-normal, and case log-normal, respectively:
xcontrol ¼ 5r F2−1ð Þ; xcase ¼ m � 5r F2−2ð Þ
xcontrol ¼ e5r F3−1ð Þ; xcase ¼ me5r F3−2ð Þ

In the simulation models, r is a random number between
0 and 1, and m is the fold-change between control and case.



Table 2 Descriptive statistics of arsenic species in the case-1, -2, and control subjects:

Arsenic in case-1 (n=157) Arsenic in case-2 (n=140) Arsenic in control (n=151) Fold change Welch t-Testt-Testt-Test K-S Test Dose-trend

Mean SD GM Median Mean SD GM Median Mean SD GM Median CC1 CC2 CC1 CC2 CC1 CC2 CC1 CC2

Total Arsenic 246.9 326.2 124.4 140.4 214.1 355.6 96.0 91.4 92.1 172.5 49.6 39.3 2.7 2.3 0.000 0.000 0.000 0.000 Yes Yes

AsB 17.5 29.1 10.5 11.6 17.2 44.6 9.8 9.7 11.4 16.9 8.1 7.9 1.5 1.5 0.026 0.151 0.002 0.004 No No

Arsenite(AsIII) 4.9 4.1 3.0 4.1 5.7 7.9 3.5 4.1 4.4 3.1 3.4 3.9 1.1 1.3 0.270 0.066 0.034 0.046 No No

Arsenate(AsV) 184.9 309.6 44.3 73.3 159.8 343.3 19.6 28.0 50.0 165.0 2.4 1.8 3.7 3.2 0.000 0.001 0.000 0.000 Yes Yes

DMA 23.3 15.9 18.7 19.1 27.1 21.3 20.5 23.4 22.7 15.4 18.2 19.1 1.0 1.2 0.000 0.044 0.000 0.009 No No

MMA 4.9 4.1 3.4 3.9 4.2 3.4 3.1 3.3 3.5 2.5 2.8 2.8 1.4 1.2 0.001 0.073 0.001 0.162 No No

The case-1, case-2 and control have included the individual samples 157, 140 and 151 in respectively; Welch t-Test: p-Value of Welch Modified Two-Sample t-Test; K-S Test: Two-Sample Kolmogorov-Smirnov Test; Dose
trend: at least one of the quartiles (the 4th quartile for the monotonic trend) has adjusted odds ratios are significant and the trend analys is p ≤ 0.000 (χ2 − Test); SD: standard deviation; GM: geometric mean; CC1:
control-case-1; CC2: control-case-2.
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Figure 3 When the random grouping numbers of pools risen
to eight, the expected frequency of non-significant difference
between the case and control for some arsenic species reached
down to the value of that the difference calculated by individual
data*. The pool numbers (i.e., numbers of pools in x-axis) was set as
2, 3, 4, 5 and 8 and coded as G2, G3, G4, G5 and G8; n = 157, 140,
and 151 for the case-1, case-2 and control subjects (Table 2); 100
times random grouping was applied to the populations; AsV:
arsenate; As: the total arsenic; MMA: methylarsonic acid; AsIII: arsenite;
DMA: dimethylarsinic acid; AsB: arsenobetaine. *For the upper
mentioned bio-monitoring data can not be normalized by logarithmic
transformation, calculated differences by using >5 random pool means
of the case and control, respectively, may be close to by using the
individual data.

Figure 4 Combing the untargeted and targeted analysis: a scheme fo
a defined case-control population.
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Although m was set to the values 1, 1.5, 2, 3 and 6, the
separately random generating of xcontrol and xcase resulted
in the modifications. m = 1.0, 1.4, 1.9, 2.9 and 5.6 in the
normal distributions (Figure 1), whereas m = 1.1, 1.6, 2.3,
4.9 and 6.8 in the log-normal distributions (Figure 2),
respectively. Using these generated data, the case-
control differences were then tested using the pooled
sample means (t-Test with p < 0.05 is set for significance),
where the numbers of pools were set to 2, 3, 4, and 5
(coded as G2, G3, G4 and G5 in Figures 1 and 2). By
performing 100 random regroupings of the two popu-
lations, we show that by increasing the number of
pools, the frequency of non-significant differences be-
tween case and control subpopulations decreases for
simulated data with a true difference between case and
control (i.e., the set means of the case are m = 5.6, 2.9,
1.9 and 1.4-folds of the control in Figure 1 with codes
D1, D2, D3 and D4, respectively; the set means of the
case are m = 6.8, 4.9, 2.3 and 1.6-folds of the control in
Figure 2 with codes D1, D2, D3 and D4, respectively).
As a result, we conclude that for the normally distributed
populations, three or more pooled samples are enough to
detect the case-control differences (Figure 1). However,
for the log-normally distributed data, a minimum of four
sets of pools are required (Figure 2) because the increased
number of pools caused their means to be more normally
distributed [27]. From the simulated data we conclude
r panoramic assessment of the environmental pollutants’ risks in
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that the detection of case-control differences depends on
both the difference in the population means, and the
number of pools.

Simulation sample pooling strategy for case-control
comparison: measured data
Measured urinary analyte data are often adjusted for cre-
atinine. Accordingly, volume of individual samples used
to constitute the sample pool should also be adjusted ac-
cording to creatinine concentrations. The sample sizes of
case-1, case-2 and control are 157, 140 and 151, respect-
ively. Here the case-1 samples consist of urine from sub-
jects with definite idiopathic male infertility and normal
semen parameters (unpublished data), the case-2 samples
consists of urine from definite idiopathic subjects with male
infertility and oligospermia [10] and the control samples of
urine from healthy males with normal reproductive func-
tion [10]. The measured arsenic species are dimethylarsinic
acid (DMA), arsenite (AsIII), methylarsonic acid (MMA),
arsenobetaine (AsB) and arsenate (AsV). Case-1 (CC1 in
Table 2) showed FC values of 1.0, 1.1, 1.4, 1.5 and 3.7 com-
pared to control, whereas case-2 (CC2 in Table 2) showed
FC values of 1.2, 1.3, 1.2, 1.5 and 3.2 for the analyte DMA,
AsIII, MMA, AsB and AsV, respectively. Statistical analysis
showed that the FC versus control calculated by individual
observations for AsIII in case-1, for AsIII, MMA and AsB in
case-2 were not robust (i.e. different results were obtained
by Welch t-Test and K-S Test), when FC values were ≤ 1.5.
However, in some situations, the differences are robust
even for FC values close to 1 (DMA in CC1), which may
suggest an important role for variance and distribution in-
formation in the statistics [26,28]. Moreover, further ana-
lysis showed that the dose-dependent adjusted odds ratio
trends (Table 2) were only significant for total arsenic along
with AsV in CC1 (unpublished data) and CC2 [10].
In the present study, simulation was also applied to ac-

tual measured arsenic data as previously described. We
found that with 100 random groupings of cases and con-
trols, the frequency of non-significant differences be-
tween case and control are still high (around 20%) for
the ternary groups of the species with FCs ≥2 (Table 2
and Figure 3). For AsV, MMA (case-1 only), and total ar-
senic (Figure 3), the pooled sample means show signifi-
cant difference between case and control, especially
when individuals are grouped four or five times. We
therefore conclude that pooled subpopulation samples
are sufficient to reveal differences between case and con-
trol (Figure 3).
In contrast to the artificial log-normally distributed

data (Figures 1 and 2), pooled subpopulation means are
not sensitive enough to recognize minor, but significant
differences between case and control for arsenic for FC
≤1.5 (Table 2). This may be because the data distribu-
tions are not exactly log-normal in most situations.
However, even if only the subpopulation means are mea-
sured, they are still sensitive enough to reveal health risk
factors, as shown for AsV and total arsenic with FC ≥ 2,
which have been linked to the male infertility risk in a
dose-dependent manner [10].

Schematic methodology for exposome analysis
The screened analytes from pooled samples may be fur-
ther analyzed by utilizing individual samples. However,
the volume of individual samples is usually insufficient
for broad-spectrum analysis of all pollutants. Instead it
is usually necessary to restrict the analysis to one specific
class of pollutant in one specific subgroup of samples.
For example, urine samples from 30 individual observa-
tions can be used for mercapturic acid conjugated pollu-
tant analysis in one subgroup whereas another subgroup
can be used to screen for heavy metals (Table 1). Follow-
ing random selection of the subgroup samples, the stat-
istical parameters of their parental populations can be
estimated as well. Finally, we present a methodology
workflow (Figure 4) from the pooled sample untargeted
screening, to the subgroup individual sample targeted
analysis for the molecular exposomein a designed case-
control. This method is well suited to meet the chal-
lenges presented by exposomics research [29].

Conclusions
In a traditional molecular epidemiology study (i.e., case-
control design), monitoring of individual samples with-
out pooling may prove a sufficient approach. However,
in molecular exposomics, a broad-spectrum strategy for
hypothesis-free pollutant risk screening, sample pooling
is a valuable tool for reducing costs, workload and
the need for large individual sample volumes. In this
context, the present methodology provides a viable alter-
native, starting with screening analysis in pooled popula-
tion samples, followed by randomized grouping of
subpopulation samples. Although it has some disadvan-
tages, such as the loss of individual information, it is
nonetheless a useful tool. We suggest that approximately
five pools and 30 samples per pool from the case and
control populations may be sufficient to investigate the
disease risk of chemical pollution. However, more sam-
ple pools and more samples per pool will always lead to
higher quality research.
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