647 research outputs found

    Where is Population II?

    Full text link
    The use of roman numerals for stellar populations represents a classification approach to galaxy formation which is now well behind us. Nevertheless, the concept of a pristine generation of stars, followed by a protogalactic era, and finally the mainstream stellar population is a plausible starting point for testing our physical understanding of early star formation. This will be observationally driven as never before in the coming decade. In this paper, we search out observational tests of an idealized coeval and homogeneous distribution of population II stars. We examine the spatial distribution of quasars, globular clusters, and the integrated free electron density of the intergalactic medium, in order to test the assumption of homogeneity. Any realreal inhomogeneity implies a population II that is not coeval.Comment: for publication in PAS

    Where is Population II?

    Get PDF
    The use of roman numerals for stellar populations represents a classification approach to galaxy formation which is now well behind us. Nevertheless, the concept of a pristine generation of stars, followed by a protogalactic era, and finally the mainstream stellar population is a plausible starting point for testing our physical understanding of early star formation. This will be observationally driven as never before in the coming decade. In this paper, we search out observational tests of an idealized coeval and homogeneous distribution of population II stars. We examine the spatial distribution of quasars, globular clusters, and the integrated free electron density of the intergalactic medium, in order to test the assumption of homogeneity. Any realreal inhomogeneity implies a population II that is not coeval.Comment: for publication in PAS

    The Dark Matter Telescope

    Get PDF
    Weak gravitational lensing enables direct reconstruction of dark matter maps over cosmologically significant volumes. This research is currently telescope-limited. The Dark Matter Telescope (DMT) is a proposed 8.4 m telescope with a 3 degree field of view, with an etendue of 260 (m.degree)2(m. degree)^2, ten times greater than any other current or planned telescope. With its large etendue and dedicated observational mode, the DMT fills a nearly unexplored region of parameter space and enables projects that would take decades on current facilities. The DMT will be able to reach 10-sigma limiting magnitudes of 27-28 magnitude in the wavelength range .3 - 1 um over a 7 square degree field in 3 nights of dark time. Here we review its unique weak lensing cosmology capabilities and the design that enables those capabilities.Comment: in-press version with additions; to appear in proceedings of the Dark Matter 2000 conference (Santa Monica, February 2000) to be published by Springe

    Shapes and Shears, Stars and Smears: Optimal Measurements for Weak Lensing

    Get PDF
    We present the theoretical and analytical bases of optimal techniques to measure weak gravitational shear from images of galaxies. We first characterize the geometric space of shears and ellipticity, then use this geometric interpretation to analyse images. The steps of this analysis include: measurement of object shapes on images, combining measurements of a given galaxy on different images, estimating the underlying shear from an ensemble of galaxy shapes, and compensating for the systematic effects of image distortion, bias from PSF asymmetries, and `"dilution" of the signal by the seeing. These methods minimize the ellipticity measurement noise, provide calculable shear uncertainty estimates, and allow removal of systematic contamination by PSF effects to arbitrary precision. Galaxy images and PSFs are decomposed into a family of orthogonal 2d Gaussian-based functions, making the PSF correction and shape measurement relatively straightforward and computationally efficient. We also discuss sources of noise-induced bias in weak lensing measurements and provide a solution for these and previously identified biases.Comment: Version accepted to AJ. Minor fixes, plus a simpler method of shape weighting. Version with full vector figures available via http://www.astro.lsa.umich.edu/users/garyb/PUBLICATIONS

    Classification of image distortions in terms of Petrov types

    Get PDF
    An observer surrounded by sufficiently small spherical light sources at a fixed distance will see a pattern of elliptical images distributed over the sky, owing to the distortion effect (shearing effect) of the spacetime geometry upon light bundles. In lowest non-trivial order with respect to the distance, this pattern is completely determined by the conformal curvature tensor (Weyl tensor) at the observation event. In this paper we derive formulas that allow to calculate these distortion patterns in terms of the Newman-Penrose formalism. Then we represent the distortion patterns graphically for all Petrov types, and we discuss their dependence on the velocity of the observer.Comment: 22 pages, 8 eps-figures; revised version, parts of Introduction and Conclusions rewritte

    Ray Tracing Simulations of Weak Lensing by Large-Scale Structure

    Get PDF
    We investigate weak lensing by large-scale structure using ray tracing through N-body simulations. Photon trajectories are followed through high resolution simulations of structure formation to make simulated maps of shear and convergence on the sky. Tests with varying numerical parameters are used to calibrate the accuracy of computed lensing statistics on angular scales from about 1 arcminute to a few degrees. Various aspects of the weak lensing approximation are also tested. For fields a few degrees on a side the shear power spectrum is almost entirely in the nonlinear regime and agrees well with nonlinear analytical predictions. Sampling fluctuations in power spectrum estimates are investigated by comparing several ray tracing realizations of a given model. For survey areas smaller than a degree on a side the main source of scatter is nonlinear coupling to modes larger than the survey. We develop a method which uses this effect to estimate the mass density parameter Omega from the scatter in power spectrum estimates for subregions of a larger survey. We show that the power spectrum can be measured accurately from realistically noisy data on scales corresponding to 1-10 Mpc/h. Non-Gaussian features in the one point distribution function of the weak lensing convergence (reconstructed from the shear) are also sensitive to Omega. We suggest several techniques for estimating Omega in the presence of noise and compare their statistical power, robustness and simplicity. With realistic noise Omega can be determined to within 0.1-0.2 from a deep survey of several square degrees.Comment: 59 pages, 22 figures included. Matches version accepted for Ap

    Joint Cosmic Shear Measurements with the Keck and William Herschel Telescopes

    Get PDF
    The recent measurements of weak lensing by large-scale structure present significant new opportunities for studies of the matter distribution in the universe. Here, we present a new cosmic shear survey carried out with the Echelle Spectrograph and Imager on the Keck II telescope. This covers a total of 0.6 square degrees in 173 fields probing independent lines of sight, hence minimising the impact of sample variance. We also extend our measurements of cosmic shear with the William Herschel Telescope (Bacon, Refregier & Ellis 2000) to a survey area of 1 square degree. The joint measurements with two independent telescopes allow us to assess the impact of instrument-specific systematics, one of the major difficulties in cosmic shear measurements. For both surveys, we carefully account for effects such as smearing by the point spread function and shearing due to telescope optics. We find negligible residuals in both cases and recover mutually consistent cosmic shear signals, significant at the 5.1 sigma level. We present a simple method to compute the statistical error in the shear correlation function, including non-gaussian sample variance and the covariance between different angular bins. We measure shear correlation functions for all fields and use these to ascertain the amplitude of the matter power spectrum, finding sigma_8 (Omega_m/0.3)^0.68 = 0.97 \pm 0.13 with 0.14<Omega_m<0.65 in a Lambda-CDM model with Gamma=0.21. These 68% CL uncertainties include sample variance, statistical noise, redshift uncertainty, and the error in the shear measurement method. The results from our two independent surveys are both consistent with measurements of cosmic shear from other groups. We discuss how our results compare with current normalisation from cluster abundance.Comment: 13 LaTex pages, including 17 figures, submitted to MNRAS. Includes updated figures 1 & 14, added references, and minor corrections to sections 3.1 and 4.

    The HST Key Project on the Extragalactic Distance Scale XXVI. The Calibration of Population II Secondary Distance Indicators and the Value of the Hubble Constant

    Get PDF
    A Cepheid-based calibration is derived for four distance indicators that utilize stars in the old stellar populations: the tip of the red giant branch (TRGB), the planetary nebula luminosity function (PNLF), the globular cluster luminosity function (GCLF) and the surface brightness fluctuation method (SBF). The calibration is largely based on the Cepheid distances to 18 spiral galaxies within cz =1500 km/s obtained as part of the HST Key Project on the Extragalactic Distance Scale, but relies also on Cepheid distances from separate HST and ground-based efforts. The newly derived calibration of the SBF method is applied to obtain distances to four Abell clusters in the velocity range between 3800 and 5000 km/s, observed by Lauer et al. (1998) using the HST/WFPC2. Combined with cluster velocities corrected for a cosmological flow model, these distances imply a value of the Hubble constant of H0 = 69 +/- 4 (random) +/- 6 (systematic) km/s/Mpc. This result assumes that the Cepheid PL relation is independent of the metallicity of the variable stars; adopting a metallicity correction as in Kennicutt et al. (1998), would produce a (5 +/- 3)% decrease in H0. Finally, the newly derived calibration allows us to investigate systematics in the Cepheid, PNLF, SBF, GCLF and TRGB distance scales.Comment: Accepted for publication in the Astrophysical Journal. 48 pages (including 13 figures and 4 tables), plus two additional tables in landscape format. Also available at http://astro.caltech.edu/~lff/pub.htm K' SBF magnitudes have been update

    The disruption of nearby galaxies by the Milky Way

    Full text link
    Interactions between galaxies are common and are an important factor in determining their physical properties such as position along the Hubble sequence and star-formation rate. There are many possible galaxy interaction mechanisms, including merging, ram-pressure stripping, gas compression, gravitational interaction and cluster tides. The relative importance of these mechanisms is often not clear, as their strength depends on poorly known parameters such as the density, extent and nature of the massive dark halos that surround galaxies. A nearby example of a galaxy interaction where the mechanism is controversial is that between our own Galaxy and two of its neighbours -- the Large and Small Magellanic Clouds. Here we present the first results of a new HI survey which provides a spectacular view of this interaction. In addition to the previously known Magellanic Stream, which trails 100 degrees behind the Clouds, the new data reveal a counter-stream which lies in the opposite direction and leads the motion of the Clouds. This result supports the gravitational model in which leading and trailing streams are tidally torn from the body of the Magellanic Clouds.Comment: 17 pages with 5 figures in gif format, scheduled for publication in the August 20th, 1998 issue of Natur
    • …
    corecore