4,933 research outputs found

    Domain wall description of superconductivity

    Get PDF
    In the present work we shall address the issue of electrical conductivity in superconductors in the perspective of superconducting domain wall solutions in the realm of field theory. We take our set up made out of a dynamical complex scalar field coupled to gauge field to be responsible for superconductivity and an extra scalar real field that plays the role of superconducting domain walls. The temperature of the system is interpreted through the fact that the soliton following accelerating orbits is a Rindler observer experiencing a thermal bath.Comment: 9 pages, 5 figures, Latex. Version to appear in PL

    Spatial variations of the fine-structure constant in symmetron models

    Full text link
    We investigate the variation of the fine-structure constant, {\alpha}, in symmetron models using N-body simulations in which the full spatial distribution of {\alpha} at different redshifts has been calculated. In particular, we obtain simulated sky maps for this variation, and determine its power spectrum. We find that in high-density regions of space (such as deep inside dark matter halos) the value of {\alpha} approaches the value measured on Earth. In the low-density outskirts of halos the scalar field value can approach the symmetry breaking value and leads to significantly different values of {\alpha}. If the scalar-photon coupling strength {\beta}{\gamma} is of order unity we find that the variation of {\alpha} inside dark matter halos can be of the same magnitude as the recent claims by Webb et al. of a dipole variation. Importantly, our results also show that with low-redshift symmetry breaking these models exhibit some dependence of {\alpha} on lookback time (as opposed to a pure spatial dipole) which could in principle be detected by sufficiently accurate spectroscopic measurements, such as those of ALMA and the ELT-HIRES.Comment: 11 pages, 9 figure

    Diamagnetic response of cylindrical normal metal - superconductor proximity structures with low concentration of scattering centers

    Full text link
    We have investigated the diamagnetic response of composite NS proximity wires, consisting of a clean silver or copper coating, in good electrical contact to a superconducting niobium or tantalum core. The samples show strong induced diamagnetism in the normal layer, resulting in a nearly complete Meissner screening at low temperatures. The temperature dependence of the linear diamagnetic susceptibility data is successfully described by the quasiclassical Eilenberger theory including elastic scattering characterised by a mean free path l. Using the mean free path as the only fit parameter we found values of l in the range 0.1-1 of the normal metal layer thickness d_N, which are in rough agreement with the ones obtained from residual resistivity measurements. The fits are satisfactory over the whole temperature range between 5 mK and 7 K for values of d_N varying between 1.6 my m and 30 my m. Although a finite mean free path is necessary to correctly describe the temperature dependence of the linear response diamagnetic susceptibility, the measured breakdown fields in the nonlinear regime follow the temperature and thickness dependence given by the clean limit theory. However, there is a discrepancy in the absolute values. We argue that in order to reach quantitative agreement one needs to take into account the mean free path from the fits of the linear response. [PACS numbers: 74.50.+r, 74.80.-g]Comment: 10 pages, 9 figure

    Vortex avalanches in the non-centrosymmetric superconductor Li2Pt3B

    Full text link
    We investigated the vortex dynamics in the non-centrosymmetric superconductor Li_2Pt_3B in the temperature range 0.1 K - 2.8 K. Two different logarithmic creep regimes in the decay of the remanent magnetization from the Bean critical state have been observed. In the first regime, the creep rate is extraordinarily small, indicating the existence of a new, very effective pinning mechanism. At a certain time a vortex avalanche occurs that increases the logarithmic creep rate by a factor of about 5 to 10 depending on the temperature. This may indicate that certain barriers against flux motion are present and they can be opened under increased pressure exerted by the vortices. A possible mechanism based on the barrier effect of twin boundaries is briefly discussed

    On the Stability of Fundamental Couplings in the Galaxy

    Get PDF
    Astrophysical tests of the stability of Nature's fundamental couplings are a key probe of the standard paradigms in fundamental physics and cosmology. In this report we discuss updated constraints on the stability of the fine-structure constant α\alpha and the proton-to-electron mass ratio μ=mp/me\mu=m_p/m_e within the Galaxy. We revisit and improve upon the analysis by Truppe {\it et al.} by allowing for the possibility of simultaneous variations of both couplings and also by combining them with the recent measurements by Levshakov {\it et al.} By considering representative unification scenarios we find no evidence for variations of α\alpha at the 0.4 ppm level, and of μ\mu at the 0.6 ppm level; if one uses the Levshakov bound on μ\mu as a prior, theα\alpha bound is improved to 0.1 ppm. We also highlight how these measurements can constrain (and discriminate among) several fundamental physics paradigms.Comment: 7 pages, 1 figur
    corecore