20,072 research outputs found

    Gamma-Ray Burst Spectral Features: Interpretation as X-ray Emission From A Photoionized Plasma

    Full text link
    Numerous reports have been made of features, either in emission or absorption, in the 10 - 1000 keV spectra of some gamma-ray bursts. Originally interpreted in the context of Galactic neutron star models as cyclotron line emission and e+−e−e^+ - e^- annihilation features, the recent demonstration that the majority of GRBs lie at cosmological distances make these explanations unlikely. In this letter, we adopt a relativistic fireball model for cosmological GRBs in which dense, metal rich blobs or filaments of plasma are entrained in the relativistic outflow. In the context of this model, we investigate the conditions under which broadband features, similar to those detected, can be observed. We find a limited region of parameter space capable of reproducing the observed GRB spectra. Finally, we discuss possible constraints further high-energy spectral observations could place on fireball model parameters.Comment: Accepted for publication in Astrophysical Journal Letters Four pages, 2 figure

    Understanding the determinants of stability and folding of small globular proteins from their energetics

    Full text link
    The results of minimal model calculations suggest that the stability and the kinetic accessibility of the native state of small globular proteins are controlled by few "hot" sites. By mean of molecular dynamics simulations around the native conformation, which simulate the protein and the surrounding solvent at full--atom level, we generate an energetic map of the equilibrium state of the protein and simplify it with an Eigenvalue decomposition. The components of the Eigenvector associated with the lowest Eigenvalue indicate which are the "hot" sites responsible for the stability and for the fast folding of the protein. Comparison of these predictions with the results of mutatgenesis experiments, performed for five small proteins, provide an excellent agreement

    Three-dimensional simulations of laser-plasma interactions at ultrahigh intensities

    Get PDF
    Three-dimensional (3D) particle-in-cell (PIC) simulations are used to investigate the interaction of ultrahigh intensity lasers (>1020> 10^{20} W/cm−2^{-2}) with matter at overcritical densities. Intense laser pulses are shown to penetrate up to relativistic critical density levels and to be strongly self-focused during this process. The heat flux of the accelerated electrons is observed to have an annular structure when the laser is tightly focused, showing that a large fraction of fast electrons is accelerated at an angle. These results shed light into the multi-dimensional effects present in laser-plasma interactions of relevance to fast ignition of fusion targets and laser-driven ion acceleration in plasmas.Comment: 2 pages, 1 figur

    Microcanonical Analysis of Exactness of the Mean-Field Theory in Long-Range Interacting Systems

    Full text link
    Classical spin systems with nonadditive long-range interactions are studied in the microcanonical ensemble. It is expected that the entropy of such a system is identical to that of the corresponding mean-field model, which is called "exactness of the mean-field theory". It is found out that this expectation is not necessarily true if the microcanonical ensemble is not equivalent to the canonical ensemble in the mean-field model. Moreover, necessary and sufficient conditions for exactness of the mean-field theory are obtained. These conditions are investigated for two concrete models, the \alpha-Potts model with annealed vacancies and the \alpha-Potts model with invisible states.Comment: 23 pages, to appear in J. Stat. Phy
    • …
    corecore