61 research outputs found

    Phthalocyanine-nanocarbon ensembles: From discrete molecular and supramolecular systems to hybrid nanomaterials

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Accounts of Chemical Research, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/ar5004384Conspectus Phthalocyanines (Pcs) are macrocyclic and aromatic compounds that present unique electronic features such as high molar absorption coefficients, rich redox chemistry, and photoinduced energy/electron transfer abilities that can be modulated as a function of the electronic character of their counterparts in donor-acceptor (D-A) ensembles. In this context, carbon nanostructures such as fullerenes, carbon nanotubes (CNTs), and, more recently, graphene are among the most suitable Pc companions. Pc-C60 ensembles have been for a long time the main actors in this field, due to the commercial availability of C60 and the ell-established synthetic methods for its functionalization. As a result, many Pc-C60 architectures have been prepared, featuring different connectivities (covalent or supramolecular), intermolecular interactions (self-organized or molecularly dispersed species), and Pc HOMO/LUMO levels. All these elements provide a versatile toolbox for tuning the photophysical properties in terms of the type of process (photoinduced energy/electron transfer), the nature of the interactions beteen the electroactive units (through bond or space), and the kinetics of the formation/decay of the photogenerated species. Some recent trends in this field include the preparation of stimuli-responsive multicomponent systems ith tunable photophysical properties and highly ordered nanoarchitectures and surface-supported systems shoing high charge mobilities. A breakthrough in the Pc-nanocarbon field as the appearance of CNTs and graphene, hich opened a ne avenue for the preparation of intriguing photoresponsive hybrid ensembles shoing light-stimulated charge separation. The scarce solubility of these 1-D and 2-D nanocarbons, together ith their loer reactivity ith respect to C60 stemming from their less strained sp2 carbon netorks, has not meant an unsurmountable limitation for the preparation of variety of Pc-based hybrids. These systems, hich sho improved solubility and dispersibility features, bring together the unique electronic transport properties of CNTs and graphene ith the excellent light-harvesting and tunable redox properties of Pcs. A singular and distinctive feature of these Pc-CNT/graphene (single- or fe-layers) hybrid materials is the control of the direction of the photoinduced charge transfer as a result of the band-like electronic structure of these carbon nanoforms and the adjustable electronic levels of Pcs. Moreover, these conjugates present intensified light-harvesting capabilities resulting from the grafting of several chromophores on the same nanocarbon platform.In this Account, recent progress in the construction of covalent and supramolecular Pc-nanocarbon ensembles is summarized, ith a particular emphasis on their photoinduced behavior. e believe that the high degree of control achieved in the preparation of Pc-carbon nanostructures, together ith the increasing knoledge of the factors governing their photophysics, ill allo for the design of next-generation light-fueled electroactive systems. Possible implementation of these Pc-nanocarbons in high performance devices is envisioned, finally turning into reality much of the expectations generated by these materialsFinancial support from the Spanish MICINN (CTQ2011-24187/BQU), the Comunidad de Madrid (S2013/MIT-2841 FOTOCARBON) and the EU (“SO2S” FP7-PEOPLE-2012-ITN, no.: 316975) is acknowledge

    Zinc Phthalocyanine−Graphene Hybrid Material for Energy Conversion: Synthesis, Characterization, Photophysics and Photoelectrochemical Cell Preparation

    Get PDF
    Graphene exfoliation upon tip sonication in o-­‐DCB was accomplished. Then, covalent grafting of (2-­‐ aminoethoxy)(tri-­‐tert-­‐butyl) zinc phthalocyanine (ZnPc), to exfoliated graphene sheets was achieved. The newly formed ZnPc-­‐graphene hybrid material was found soluble in common organic solvents without any precipitation for several weeks. Application of diverse spectroscopic techniques verified the successful formation of ZnPc-­‐graphene hybrid materi-­‐ al, while thermogravimetric analysis revealed the amount of ZnPc loading onto graphene. Microscopy analysis based on AFM and TEM was applied to probe the morphological characteristics and to investigate the exfoliation of graphene sheets. Efficient fluorescence quenching of ZnPc in the ZnPc-­‐graphene hybrid material suggested that photoinduced events occur from the photoexcited ZnPc to exfoliated graphene. The dynamics of the photoinduced electron transfer was evaluated by femtosecond transient absorption spectroscopy, thus, revealing the formation of transient species such as ZnPc+ yielding the charge-­‐separated state ZnPc•+–graphene•–. Finally, the ZnPc-­‐graphene hybrid material was integrated into a photoactive electrode of an optical transparent electrode (OTE) cast with nanostructured SnO2 films (OTE/SnO2), which exhibited sta le and reproducible photocurrent responses and the incident photon-­‐to-­‐current conversion efficien-­‐ cy was determine

    Self-similar Nature of 3D Video Formats

    No full text

    Synthesis, characterization, molecular structure and theoretical studies of axially fluoro-substituted subazaporphyrins

    No full text
    A new and general synthetic method for the preparation of fluoro-substituted subazaporphyrins is reported that involves the treatment of the corresponding chloro- or aryloxy-substituted subazaporphyrins (SubAPs) with BF3·OEt2. The strategy has been applied to both subphthalocyanines (SubPcs) and subporphyrazines (SubPzs). The yields were high for the latter, although low yields were obtained for the benzo derivatives. In contrast to the corresponding chloro derivatives, fluorosubazaporphyrins are quite robust towards hydrolysis. All of the new compounds were characterized by several spectroscopic techniques. which included 1H, 13C, 19F, 15N, and 11B NMR spectroscopy. IR spectroscopy, UV/Vis spectrophotometry, and mass spectrometry (both high and low resolution). In addition. DFT calculations provided theoretical NMR spectroscopy values that are in good agreement with the experimental ones. The high dipole moments exhibited by the fluorosubazaporphyrins as a result of the presence of a fluorine atom in an axial position are responsible for the spontaneous and singular supramolecular aggregation of the macrocycles in the crystalline state. The molecular and crystal structures of two one-dimensional fluorine SubAPs, namely, a SubPc and a SubPz, are discussed. Molecules of the same class stack in alternating configurations along the c axis, which gives rise to columns that contain large numbers of monomers. SubPz 3c forms aggregates with the macrocycles arranged in a parallel fashion with the B-F bonds perfectly aligned within a column, whereas with SubPc 3b the neighboring columns cause a commensurate sinusoidal distortion along the columns in the c direction, which prevents the alignment of the B-F bonds. However, the most remarkable feature, common to both crystalline architectures, is the extremely short and unusual intermolecular F⋯N distances of the contiguous molecules, which are shorter than the sum of the corresponding van der Waals radii. Theoretical calculations have shown that these short distances can be explained by the existence of a cooperativity effect as the number of monomers included in the cluster increases. © 2008 Wiley-VCH Verlag GmbH & Co. KGaA.Peer Reviewe

    TDDFT study of the UV-vis spectra of subporphyrazines and subphthalocyanines

    No full text
    The UV-vis spectra of a series of subporphyrazines, SubPz(A,R), and subphthalocyanines, SubPc(A,R) (A = F, Cl; R = H, F, CH 3, C 3H 7, SCH 3, SC 2H 5 and SPh), where A is the substituent attached to the central boron atom and R is the substituent attached to the periphery of the molecule have been analyzed through the use of TDDFT calculations in vacuum and using chloroform as a solvent. The absorption spectra depend on both, the characteristics of the substituent attached to the periphery of the molecule and the extension of the π-system on going from SubPz to the SubPc analog. These latter effects lead to a red-shift of both the Q-band and the B-band, although the effect is larger for the former, mainly due to the increase of HOMOLUMO energy gap on going from the SubPz to the SubPc analog. The effect of the substituents R is more intricate, because the profile of the absorption spectra changes depending on whether both substituents are on the same side (uu or dd) or on opposite sides (ud) of the molecular cone. Since the three conformers are rather close in energy, the observed spectra correspond, very likely, to the sum of the spectra of all of them. © 2011 World Scientific Publishing Company.Peer Reviewe
    corecore