1,143 research outputs found

    Dendritic Cell Editing by Activated Natural Killer Cells Results in a More Protective Cancer-Specific Immune Response

    Get PDF
    Over the last decade, several studies have extensively reported that activated natural killer (NK) cells can kill autologous immature dendritic cells (DCs) in vitro, whereas they spare fully activated DCs. This led to the proposal that activated NK cells might select a more immunogenic subset of DCs during a protective immune response. However, there is no demonstration that autologous DC killing by NK cells is an event occurring in vivo and, consequently, the functional relevance of this killing remains elusive. Here we report that a significant decrease of CD11c+ DCs was observed in draining lymph nodes of mice inoculated with MHC-devoid cells as NK cell targets able to induce NK cell activation. This in vivo DC editing by NK cells was perforin-dependent and it was functionally relevant, since residual lymph node DCs displayed an improved capability to induce T cell proliferation. In addition, in a model of anti-cancer vaccination, the administration of MHC-devoid cells together with tumor cells increased the number of tumor-specific CTLs and resulted in a significant increase in survival of mice upon challenge with a lethal dose of tumor cells. Depletion of NK cells or the use of perforin knockout mice strongly decreased the tumor-specific CTL expansion and its protective role against tumor cell challenge. As a whole, our data support the hypothesis that NK cell-mediated DC killing takes place in vivo and is able to promote expansion of cancer-specific CTLs. Our results also indicate that cancer vaccines could be improved by strategies aimed at activating NK cells

    Anti-leukemia activity of alloreactive NK cells in KIR ligand-mismatched haploidentical HSCT for pediatric patients: evaluation of the functional role of activating KIR and redefinition of inhibitory KIR specificity.

    Get PDF
    none15We analyzed 21 children with leukemia receiving haploidentical hematopoietic stem cell transplantation (haplo-HSCT) from killer immunoglobulin (Ig)-like receptors (KIR) ligand-mismatched donors. We showed that, in most transplantation patients, variable proportions of donor-derived alloreactive natural killer (NK) cells displaying anti-leukemia activity were generated and maintained even late after transplantation. This was assessed through analysis of donor KIR genotype, as well as through phenotypic and functional analyses of NK cells, both at the polyclonal and clonal level. Donor-derived KIR2DL1(+) NK cells isolated from the recipient displayed the expected capability of selectively killing C1/C1 target cells, including patient leukemia blasts. Differently, KIR2DL2/3(+) NK cells displayed poor alloreactivity against leukemia cells carrying human leukocyte antigen (HLA) alleles belonging to C2 group. Unexpectedly, this was due to recognition of C2 by KIR2DL2/3, as revealed by receptor blocking experiments and by binding assays of soluble KIR to HLA-C transfectants. Remarkably, however, C2/C2 leukemia blasts were killed by KIR2DL2/3(+) (or by NKG2A(+)) NK cells that coexpressed KIR2DS1. This could be explained by the ability of KIR2DS1 to directly recognize C2 on leukemia cells. A role of the KIR2DS2 activating receptor in leukemia cell lysis could not be demonstrated. Altogether, these results may have important clinical implications for the selection of optimal donors for haplo-HSCT.openPENDE D; MARCENARO S; FALCO M; MARTINI S; BERNARDO ME; MONTAGNA D; ROMEO E; COGNET C; MARTINETTI M; MACCARIO R; MINGARI MC; VIVIER E; MORETTA L; LOCATELLI F; MORETTA A.Pende, D; Marcenaro, S; Falco, M; Martini, S; Bernardo, Me; Montagna, Daniela; Romeo, E; Cognet, C; Martinetti, M; Maccario, R; Mingari, Mc; Vivier, E; Moretta, L; Locatelli, Franco; Moretta, A

    Microenvironment in neuroblastoma: Isolation and characterization of tumor-derived mesenchymal stromal cells

    Get PDF
    Background: It has been proposed that mesenchymal stromal cells (MSCs) promote tumor progression by interacting with tumor cells and other stroma cells in the complex network of the tumor microenvironment. We characterized MSCs isolated and expanded from tumor tissues of pediatric patients diagnosed with neuroblastomas (NB-MSCs) to define interactions with the tumor microenvironment. Methods: Specimens were obtained from 7 pediatric patients diagnosed with neuroblastoma (NB). Morphology, immunophenotype, differentiation capacity, proliferative growth, expression of stemness and neural differentiation markers were evaluated. Moreover, the ability of cells to modulate the immune response, i.e. inhibition of phytohemagglutinin (PHA) activated peripheral blood mononuclear cells (PBMCs) and natural killer (NK) cytotoxic function, was examined. Gene expression profiles, known to be related to tumor cell stemness, Wnt pathway activation, epithelial-mesenchymal transition (EMT) and tumor metastasis were also evaluated. Healthy donor bone marrow-derived MSCs (BM-MSC) were employed as controls. Results: NB-MSCs presented the typical MSC morphology and phenotype. They showed a proliferative capacity superimposable to BM-MSCs. Stemness marker expression (Sox2, Nanog, Oct3/4) was comparable to BM-MSCs. NB-MSC in vitro osteogenic and chondrogenic differentiation was similar to BM-MSCs, but NB-MSCs lacked adipogenic differentiation capacity. NB-MSCs reached senescence phases at a median passage of P7 (range, P5-P13). NB-MSCs exhibited greater immunosuppressive capacity on activated T lymphocytes at a 1:2 (MSC: PBMC) ratio compared with BM-MSCs (p = 0.018). NK cytotoxic activity was not influenced by co-culture, either with BM-MSCs or NB-MSCs. Flow-cytometry cell cycle analysis showed that NB-MSCs had an increased number of cells in the G0-G1 phase compared to BM-MSCs. Transcriptomic profiling results indicated that NB-MSCs were enriched with EMT genes compared to BM-MSCs. Conclusions: We characterized the biological features, the immunomodulatory capacity and the gene expression profile of NB-MSCs. The NB-MSC gene expression profile and their functional properties suggest a potential role in promoting tumor escape, invasiveness and metastatic traits of NB cancer cells. A better understanding of the complex mechanisms underlying the interactions between NB cells and NB-derived MSCs should shed new light on potential novel therapeutic approaches

    Inhibitory 2B4 contributes to NK cell education and immunological derangements in XLP1 patients

    Get PDF
    X-linked lymphoproliferative disease 1 (XLP1) is an inherited immunodeficiency, caused by mutations in SH2D1A encoding Signaling Lymphocyte Activation Molecule (SLAM)-associated protein (SAP). In XLP1, 2B4, upon engagement with CD48, has inhibitory instead of activating function. This causes a selective inability of cytotoxic effectors to kill EBV-infected cells, with dramatic clinical sequelae. Here, we investigated the NK cell education in XLP1, upon characterization of killer Ig-like receptor (KIR)/KIR-L genotype and phenotypic repertoire of self-HLA class I specific inhibitory NK receptors (self-iNKRs). We also analyzed NK-cell cytotoxicity against CD48+ or CD48− KIR-ligand matched or autologous hematopoietic cells in XLP1 patients and healthy controls. XLP1 NK cells may show a defective phenotypic repertoire with substantial proportion of cells lacking self-iNKR. These NK cells are cytotoxic and the inhibitory 2B4/CD48 pathway plays a major role to prevent killing of CD48+ EBV-transformed B cells and M1 macrophages. Importantly, self-iNKR defective NK cells kill CD48− targets, such as mature DCs. Self-iNKR− NK cells in XLP1 patients are functional even in resting conditions, suggesting a role of the inhibitory 2B4/CD48 pathway in the education process during NK-cell maturation. Killing of autologous mature DC by self-iNKR defective XLP1 NK cells may impair adaptive responses, further exacerbating the patients’ immune defect

    Neonatal invariant Va24+ NKT lymphocytes are activated memory cells.

    Get PDF
    NKT cells are a small subset of T lymphocytes which express an invariant V(alpha24JalphaQ TCR and recognize glycolipids presented by CD1d. In adults, NKT cells have a memory phenotype, frequently associated with oligoclonal expansion, express NK cell markers, and produce TO cytokines upon primary stimulation. Because of these features, NKT cells are regarded as lymphocytes of innate immunity. We investigated NKT cells from cord blood to see how these cells appear in the absence of exogenous stimuli. We found that NKT cells are present at comparable frequencies in cord blood and adult peripheral blood mononuclear cells and in both cases display a memory (CD45RO+CD62L-) phenotype. However, neonatal NKT cells differ from their adult counterparts by the following characteristics: (1) they express markers of activation, such as CD25; (2) they are polyclonal; (3) they do not produce cytokines in response to primary stimulation. Together, our data show that human NKT cells arise in the newborn with an activated memory phenotype, probably due to recognition of an endogenous ligand(s). The absence of oligoclonal expansion and primary effector functions also suggest that neonatal NKT cells, despite their activated memory phenotype, require a further priming/differentiation event to behave as fully functional cells of innate immunity

    Role of Ovarian Proteins Secreted by Toxoneuron nigriceps (Viereck) (Hymenoptera, Braconidae) in the Early Suppression of Host Immune Response

    Get PDF
    Toxoneuron nigriceps (Viereck) (Hymenoptera, Braconidae) is an endophagous parasitoid of the larval stages of the tobacco budworm, Heliothis virescens (Fabricius) (Lepidoptera, Noctuidae). During oviposition, T. nigriceps injects into the host body, along with the egg, the venom, the calyx fluid, which contains a Polydnavirus (T. nigriceps BracoVirus: TnBV), and the Ovarian Proteins (OPs). Although viral gene expression in the host reaches detectable levels after a few hours, a precocious disruption of the host metabolism and immune system is observed right after parasitization. This alteration appears to be induced by female secretions including TnBV venom and OPs. OPs, originating from the ovarian calyx cells, are involved in the induction of precocious symptoms in the host immune system alteration. It is known that OPs in braconid and ichneumonid wasps can interfere with the cellular immune response before Polydnavirus infects and expresses its genes in the host tissues. Here we show that T. nigriceps OPs induce several alterations on host haemocytes that trigger cell death. The OP injection induces an extensive oxidative stress and a disorganization of actin cytoskeleton and these alterations can explain the high-level of haemocyte mortality, the loss of haemocyte functionality, and so the reduction in encapsulation ability by the host

    Different features of tumor-associated NK cells in patients with low-grade or high-grade peritoneal carcinomatosis

    Get PDF
    Peritoneal carcinomatosis (PC) is a rare disease defined as diffused implantation of neoplastic cells in the peritoneal cavity. This clinical picture occurs during the evolution of peritoneal tumors, and it is the main cause of morbidity and mortality of patients affected by these pathologies, though cytoreductive surgery with heated intra-peritoneal chemotherapy (CRS/HIPEC) is yielding promising results. In the present study, we evaluated whether the tumor microenvironment of low-grade and high-grade PC could affect the phenotypic and functional features and thus the anti-tumor potential of NK cells. We show that while in the peritoneal fluid (PF) of low-grade PC most CD56dim NK cells show a relatively immature phenotype (NKG2A+KIR\u2013CD57\u2013CD16dim), in the PF of high-grade PC NK cells are, in large majority, mature (CD56dimKIR+CD57+CD16bright). Furthermore, in low-grade PC, PF-NK cells are characterized by a sharp down-regulation of some activating receptors, primarily NKp30 and DNAM-1, while, in high-grade PC, PF-NK cells display a higher expression of the PD-1 inhibitory checkpoint. The compromised phenotype observed in low-grade PC patients corresponds to a functional impairment. On the other hand, in the high-grade PC patients PF-NK cells show much more important defects that only partially reflect the compromised phenotype detected. These data suggest that the PC microenvironment may contribute to tumor escape from immune surveillance by inducing different NK cell impaired features leading to altered anti-tumor activity. Notably, after CRS/HIPEC treatment, the altered NK cell phenotype of a patient with a low-grade disease and favorable prognosis was reverted to a normal one. Our present data offer a clue for the development of new immunotherapeutic strategies capable of restoring the NK-mediated anti-tumor responses in association with the CRS/HIPEC treatment to increase the effectiveness of the current therapy
    • …
    corecore