167 research outputs found

    Reduced endocytosis and altered lysosome function in cisplatin-resistant cell lines

    Get PDF
    We isolated human KB adenocarcinoma cisplatin-resistant (CP-r) cell lines with multidrug-resistance phenotypes because of reduced accumulation of cisplatin and other cytotoxic compounds such as methotrexate and heavy metals. The uptake of horseradish peroxidase (HRPO) and Texas Red dextran was decreased several-fold in KB-CP-r cells, indicating a general defect in fluid-phase endocytosis. In contrast, although EGF receptors were decreased in amount, the kinetics of EGF uptake, a marker of receptor-mediated endocytosis, was similar in sensitive and resistant cells. However, 40โ€“60% of the 125I-EGF released into the medium after uptake into lysosomes of KB-CP-r cells was TCA precipitable as compared to only 10% released by sensitive cells. These results indicate inefficient degradation of internalised 125I-EGF in the lysosomes of KB-CP-r cells, consistent with slower processing of cathepsin L, a lysosomal cysteine protease. Treatment of KB cells by bafilomycin A1, a known inhibitor of the vacuolar proton pump, mimicked the phenotype seen in KB-CP-r cells with reduced uptake of HRPO, 125I-EGF, 14C-carboplatin, and release of TCA precipitable 125I-EGF. KB-CP-r cells also had less acidic lysosomes. KB-CP-r cells were crossresistant to Pseudomonas exotoxin, and Pseudomonas exotoxin-resistant KB cells were crossresistant to cisplatin. Since cells with endosomal acidification defects are known to be resistant to Pseudomonas exotoxin and blocking of endosomal acidification mimics the CP-r phenotype, we conclude that defective endosomal acidification may contribute to acquired cisplatin resistance

    Development of a personalised device for systemic magnetic drug targeting to brain tumours

    Get PDF
    Delivering therapies to deeply seated brain tumours (BT) is a major clinical challenge. Magnetic drug targeting (MDT) could overcome this by rapidly transporting magnetised drugs directly into BT. We have developed a magnetic device for application in murine BT models using an array of neodymium magnets with a combined strength of 0.7T. In a closed fluidic system, the magnetic device trapped magnetic nanoparticles (MNP) up to distances of 0.8cm. In mice, the magnetic device guided intravenously administered MNP (<50nm) from the circulation into the brain where they localised within mouse BT. Furthermore, MDT of magnetised Temozolomide (TMZmag+) significantly reduced tumour growth and extended mouse survival to 48 days compared to the other treatment groups. Using the same principles, we built a proof of principle scalable magnetic device for human use with a strength of 1.1T. This magnetic device demonstrated trapping of MNP undergoing flow at distances up to 5cm. MDT using our magnetic device provides an opportunity for targeted delivery of magnetised drugs to human BT

    Sleep study, respiratory mechanics, chemosensitive response and quality of life in morbidly obese patients undergoing bariatric surgery: a prospective, randomized, controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity is a major public health problem in both developed and developing countries alike and leads to a series of changes in respiratory physiology. There is a strong correlation between obesity and cardiopulmonary sleep disorders. Weight loss among such patients leads to a reduction in these alterations in respiratory physiology, but clinical treatment is not effective for a long period of time. Thus, bariatric surgery is a viable option.</p> <p>Methods/Design</p> <p>The present study involves patients with morbid obesity (BMI of 40 kg/m<sup>2 </sup>or 35 kg/m<sup>2 </sup>to 39.9 kg/m<sup>2 </sup>with comorbidities), candidates for bariatric surgery, screened at the Santa Casa de Misericรณrdia Hospital in the city of Sao Paulo (Brazil). The inclusion criteria are grade III morbid obesity, an indication for bariatric surgery, agreement to participate in the study and a signed term of informed consent. The exclusion criteria are BMI above 55 kg/m<sup>2</sup>, clinically significant or unstable mental health concerns, an unrealistic postoperative target weight and/or unrealistic expectations of surgical treatment. Bariatric surgery candidates who meet the inclusion criteria will be referred to Santa Casa de Misericรณrdia Hospital and will be reviewed again 30, 90 and 360 days following surgery. Data collection will involve patient records, personal data collection, objective assessment of HR, BP, neck circumference, chest and abdomen, collection and analysis of clinical preoperative findings, polysomnography, pulmonary function test and a questionnaire on sleepiness.</p> <p>Discussion</p> <p>This paper describes a randomised controlled trial of morbidly obese patients. Polysomnography, respiratory mechanics, chemosensitive response and quality of life will be assessed in patients undergoing or not undergoing bariatric surgery.</p> <p>Trial Registration</p> <p>The protocol for this study is registered with the Brazilian Registry of Clinical Trials - ReBEC (RBR-9k9hhv).</p

    Mammary Involution and Breast Cancer Risk: Transgenic Models and Clinical Studies

    Get PDF
    Postlactational involution is the process following weaning during which the mammary gland undergoes massive cell death and tissue remodeling as it returns to the pre-pregnant state. Lobular involution is the process by which the breast epithelial tissue is gradually lost with aging of the mammary gland. While postlactational involution and lobular involution are distinct processes, recent studies have indicated that both are related to breast cancer development. Experiments using a variety of rodent models, as well as observations in human populations, suggest that deregulation of postlactational involution may act to facilitate tumor formation. By contrast, new human studies show that completion of lobular involution protects against subsequent breast cancer incidence

    Are women different?

    No full text
    • โ€ฆ
    corecore