68 research outputs found

    Thickness-modulated tungsten-carbon superconducting nanostructures grown by focused ion beam induced deposition for vortex pinning up to high magnetic fields

    Get PDF
    We report efficient vortex pinning in thickness-modulated tungsten–carbon-based (W–C) nanostructures grown by focused ion beam induced deposition (FIBID). By using FIBID, W–C superconducting films have been created with thickness modulation properties exhibiting periodicity from 60 to 140 nm, leading to a strong pinning potential for the vortex lattice. This produces local minima in the resistivity up to high magnetic fields (2.2 T) in a broad temperature range due to commensurability effects between the pinning potential and the vortex lattice. The results show that the combination of single-step FIBID fabrication of superconducting nanostructures with built-in artificial pinning landscapes and the small intrinsic random pinning potential of this material produces strong periodic pinning potentials, maximizing the opportunities for the investigation of fundamental aspects in vortex science under changing external stimuli (e.g., temperature, magnetic field, electrical current)

    Enhancement of long-range correlations in a 2D vortex lattice by an incommensurate 1D disorder potential

    Get PDF
    arXiv:1410.7782v1Long-range correlations in two-dimensional (2D) systems are significantly altered by disorder potentials. Theory has predicted the existence of disorder-induced phenomena, such as Anderson localization or the emergence of a Bose glass. More recently, it has been shown that when disorder breaks 2D continuous symmetry, long-range correlations can be enhanced. Experimentally, developments in quantum gases have allowed the observation of the effects of competition between interaction and disorder. However, experiments exploring the effect of symmetry-breaking disorder are lacking. Here, we create a 2D vortex lattice at 0.1 K in a superconducting thin film with a well-defined 1D thickness modulation - the symmetry-breaking disorder - and track the field-induced modification using scanning tunnelling microscopy. We find that the 1D modulation becomes incommensurate with the vortex lattice and drives an order-disorder transition, behaving as a scale-invariant disorder potential. We show that the transition occurs in two steps and is mediated by the proliferation of topological defects. The resulting critical exponents determining the loss of positional and orientational order are far above theoretical expectations for scale-invariant disorder and follow instead the critical behaviour describing dislocation unbinding melting. Our data show that randomness disorders a 2D crystal, with enhanced long-range correlations due to the presence of a 1D modulation.This work was supported by the Spanish MINECO (FIS2011-23488, MAT2011-27553-C02, MAT 2012-38318-C03, Consolider Ingenio Molecular Nanoscience CSD2007-00010), the Comunidad de Madrid through program Nanobiomagnet (S2009/MAT-1726) and by the Marie Curie Actions under the project FP7-PEOPLE-2013-CIG-618321 and contract no. FP7-PEOPLE-2010-IEF-273105.Peer Reviewe

    TOpic: rare and special cases, the real "Strange cases"

    Get PDF
    Introduction: The bladder hernia represents approximately 1-3% of all inguinal hernias, where patients aged more than 50 years have a higher incidence (10%). Many factors contribute to the development of a bladder hernia, including the presence of a urinary outlet obstruction causing chronic bladder distention, the loss of bladder tone, pericystitis, the perivesical bladder fat protrusion and the obesity

    Enabling Viewpoint Learning through Dynamic Label Generation

    Get PDF
    Optimal viewpoint prediction is an essential task in many computer graphics applications. Unfortunately, common viewpoint qualities suffer from two major drawbacks: dependency on clean surface meshes, which are not always available, and the lack of closed-form expressions, which requires a costly search involving rendering. To overcome these limitations we propose to separate viewpoint selection from rendering through an end-to-end learning approach, whereby we reduce the influence of the mesh quality by predicting viewpoints from unstructured point clouds instead of polygonal meshes. While this makes our approach insensitive to the mesh discretization during evaluation, it only becomes possible when resolving label ambiguities that arise in this context. Therefore, we additionally propose to incorporate the label generation into the training procedure, making the label decision adaptive to the current network predictions. We show how our proposed approach allows for learning viewpoint predictions for models from different object categories and for different viewpoint qualities. Additionally, we show that prediction times are reduced from several minutes to a fraction of a second, as compared to state-of-the-art (SOTA) viewpoint quality evaluation. We will further release the code and training data, which will to our knowledge be the biggest viewpoint quality dataset available

    EURECA: European-Japanese microcalorimeter array

    Get PDF
    The EURECA project aims to demonstrate technological readiness of a micro-calorimeter array for application in future X-ray astronomy missions, like Constellation-X, EDGE, and XEUS. The prototype instrument consists of a 5 × 5 pixel array of TES-based micro-calorimeters read out by two SQUID-amplifier channels using frequency-domain-multiplexing (FDM) with digital base-band feedback. The detector array is cooled by a cryogen-free cryostat consisting of a pulse tube cooler and a two stage ADR. Initial tests of the system at the PTB beam line of the BESSY synchrotron showed stable performance and an X-ray energy resolution of 1.5 eV at 250 eV for read-out of one TES-pixel only. Next step is deployment of FDM to read-out the full array. Full performance demonstration is expected end 2008.This work was financially supported by the Dutch Organization for Scientific Research (NWO).Peer Reviewe

    Effectiveness of habitat management in the recovery of low-density populations of wild rabbit.

    Get PDF
    Understanding the relationship between spatial patterns of landscape attributes and population presence and abundance is essential for understanding population processes as well as supporting management and conservation strategies. This study evaluates the influence of three factors: environment, habitat management, and season on the presence and abundance of the wild rabbit (Oryctolagus cuniculus), an important prey species for Mediterranean endangered predator species. To address this issue, we estimated wild rabbit presence and abundance by latrine counting in transects located in 45 plots within a 250×250 m grid from June 2007 until June 2009 in a 1,200 ha hunting area in southern Portugal.We then analyzed how wild rabbit presence and abundance correlatewith the aforementioned factors. Our results showed that the main variable influencing wild rabbit presence and abundance was the distance to the artificial warrens. North and northeast slope directions were negatively related to wild rabbit presence. Conversely, rabbit presence was positively correlated with short distances to ecotone, artificial warrens, and spring. Regarding rabbit abundance, in addition to artificial warrens, soft soils, bushes, and season also had a positive effect. We found that environmental variables, management practices, and season each affect wild rabbit presence and abundance differently at a home range scale in low-density population. Thus, our major recommendations are reducing the distance to artificial warrens and ecotone, ideally to less than 100 m, and promoting habitat quality improvement on slopes with plenty of sun exposure

    A new optimization model for wastewater treatment planning with a temporal component

    No full text
    The management of wastewater systems constitutes a complex problem in the environmental engineering field. The variability and uncertainty of the inflows of wastewater treatment plants involve a real risk of reducing the effectiveness of the treatments and worsen the ecological state of river basins. An adequate reduction of contaminants requires an optimal combination of wastewater contributions that must constitute the treatment inflow. The problem is complex because of different dynamics and casuistics of wastewater generation, especially when the waste is from industrial activities. In addition, a realistic focus requires consideration of the temporal component due to the distances from the treatment. This paper presents a new optimization model for planning the wastewater inflow in a consistent way, with the novelty from the inclusion of this temporal component. Under the assumption of a complete knowledge of the future, the problem can be expressed as a quadratically constrained program (QCP). With growing problem size, solvers such as CONOPT have increasing difficulties to find good solutions to such problems. Therefore, we propose solving this problem as an online optimization problem in which the quadratic terms are eliminated. Our approach was applied to a virtual case study based on a high number (200) of industrial wastewater generators (located in 4 different zones) and a single wastewater treatment plant. The results obtained evidence the applicability of the model to plan favourably the operation of treatments and contribute to sustainability in the context of the internet of things.Héctor Monclús acknowledges support from the Spanish Ministry of Economy, Industry and Competitiveness for co-funding the postdoctoral grant (IJCI-2015-23159). Marta Verdaguer, Manel Poch and Héctor Monclús acknowledge the Spanish Ministry of Economy and Competitiveness (MINECO) for partially financing this study through the WATSON project (CTM2017-83598-R). LEQUIA has been recognized as a consolidated research group by the Catalan Government (2017-SGR-1552)

    Thickness-modulated tungsten–carbon superconducting nanostructures grown by focused ion beam induced deposition for vortex pinning up to high magnetic fields

    Get PDF
    We report efficient vortex pinning in thickness-modulated tungsten-carbon-based (W-C) nanostructures grown by focused ion beam induced deposition (FIBID). By using FIBID, W-C superconducting films have been created with thickness modulation properties exhibiting periodicity from 60 to 140 nm, leading to a strong pinning potential for the vortex lattice. This produces local minima in the resistivity up to high magnetic fields (2.2 T) in a broad temperature range due to commensurability effects between the pinning potential and the vortex lattice. The results show that the combination of single-step FIBID fabrication of superconducting nanostructures with built-in artificial pinning landscapes and the small intrinsic random pinning potential of this material produces strong periodic pinning potentials, maximizing the opportunities for the investigation of fundamental aspects in vortex science under changing external stimuli (e.g., temperature, magnetic field, electrical current).This work was supported by Spanish Ministry of Economy and Competitivity through projects No. MAT2014-51982-C2-1-R and MAT2014-51982-C2-2-R (including FEDER funds), FIS2014-54498-R, MDM-2014-0377, by the Aragon Regional Government, including European Social Funds, by the Comunidad de Madrid through program Nanofrontmag-CM (S2013/MIT-2850) and by EU (Cost MP-1201 and FP7-PEOPLE-2013-CIG 618321). I. G. Serrano acknowledges Abengoa Research Company for providing a thesis fellowship. I. G. acknowledges the European Research Council (ERC-2015-STG-679080), FBBVA and Axa Research Funds.Peer Reviewe

    Effect of cycle changes on simultaneous biological nutrient removal in a sequencing batch reactor (SBR)

    No full text
    The destabilization of a microbial population is sometimes hard to solve when different biological reactions are coupled in the same reactor as in sequencing batch reactors (SBRs). This paper will try to guide through practical experiences the recovery of simultaneous nitrogen and phosphorus removal in an SBR after increasing the demand of wastewater treatment by taking advantage of its flexibility. The results demonstrate that the length of phases and the optimization of influent distribution are key factors in stabilizing the system for long-term periods with high nutrient removal (88%, 93% and 99% of carbon, nitrogen and phosphorus, respectively). In order to recover a biological nutrient removal (BNR) system, different interactions such as simultaneous nitrification and denitrification and also phosphorus removal must be taken into account. As a general conclusion, it can be stated there is no such thing as a perfect SBR operation, and that much will depend on the state of the BNR system. Hence, the SBR operating strategy must be based on a dynamic cycle definition in line with process efficiency

    Online monitoring of membrane fouling in submerged MBRs.

    No full text
    none5H. Monclús; G. Ferrero; G. Buttiglieri; J. Comas; I. Rodriguez-RodaH., Monclús; G., Ferrero; Buttiglieri, Gianluigi; J., Comas; I., Rodriguez Rod
    corecore