6 research outputs found

    Opportunistic infections and AIDS malignancies early after initiating combination antiretroviral therapy in high-income countries

    No full text
    Background: There is little information on the incidence of AIDS-defining events which have been reported in the literature to be associated with immune reconstitution inflammatory syndrome (IRIS) after combined antiretroviral therapy (cART) initiation. These events include tuberculosis, mycobacterium avium complex (MAC), cytomegalovirus (CMV) retinitis, progressive multifocal leukoencephalopathy (PML), herpes simplex virus (HSV), Kaposi sarcoma, non-Hodgkin lymphoma (NHL), cryptococcosis and candidiasis. Methods: We identified individuals in the HIV-CAUSAL Collaboration, which includes data from six European countries and the US, who were HIV-positive between 1996 and 2013, antiretroviral therapy naive, aged at least 18 years, hadCD4+ cell count and HIV-RNA measurements and had been AIDS-free for at least 1 month between those measurements and the start of follow-up. For each AIDS-defining event, we estimated the hazard ratio for no cART versus less than 3 and at least 3 months since cART initiation, adjusting for time-varying CD4+ cell count and HIV-RNA via inverse probability weighting. Results: Out of 96 562 eligible individuals (78% men) with median (interquantile range) follow-up of 31 [13,65] months, 55 144 initiated cART. The number of cases varied between 898 for tuberculosis and 113 for PML. Compared with non-cART initiation, the hazard ratio (95% confidence intervals) up to 3 months after cART initiation were 1.21 (0.90-1.63) for tuberculosis, 2.61 (1.05-6.49) for MAC, 1.17 (0.34-4.08) for CMV retinitis, 1.18 (0.62-2.26) for PML, 1.21 (0.83-1.75) for HSV, 1.18 (0.87-1.58) for Kaposi sarcoma, 1.56 (0.82-2.95) for NHL, 1.11 (0.56-2.18) for cryptococcosis and 0.77 (0.40-1.49) for candidiasis. Conclusion: With the potential exception of mycobacterial infections, unmasking IRIS does not appear to be a common complication of cART initiation in high-income countries. © 2014 Wolters Kluwer Health | Lippincott Williams & Wilkins

    Human immunodeficiency virus continuum of care in 11 european union countries at the end of 2016 overall and by key population: Have we made progress?

    Get PDF
    Background. High uptake of antiretroviral treatment (ART) is essential to reduce human immunodeficiency virus (HIV) transmission and related mortality; however, gaps in care exist. We aimed to construct the continuum of HIV care (CoC) in 2016 in 11 European Union (EU) countries, overall and by key population and sex. To estimate progress toward the Joint United Nations Programme on HIV/AIDS (UNAIDS) 90-90-90 target, we compared 2016 to 2013 estimates for the same countries, representing 73% of the population in the region. Methods. A CoC with the following 4 stages was constructed: number of people living with HIV (PLHIV); proportion of PLHIV diagnosed; proportion of those diagnosed who ever initiated ART; and proportion of those ever treated who achieved viral suppression at their last visit. Results. We estimated that 87% of PLHIV were diagnosed; 92% of those diagnosed had ever initiated ART; and 91% of those ever on ART, or 73% of all PLHIV, were virally suppressed. Corresponding figures for men having sex with men were: 86%, 93%, 93%, 74%; for people who inject drugs: 94%, 88%, 85%, 70%; and for heterosexuals: 86%, 92%, 91%, 72%. The proportion suppressed of all PLHIV ranged from 59% to 86% across countries. Conclusions. The EU is close to the 90-90-90 target and achieved the UNAIDS target of 73% of all PLHIV virally suppressed, significant progress since 2013 when 60% of all PLHIV were virally suppressed. Strengthening of testing programs and treatment support, along with prevention interventions, are needed to achieve HIV epidemic control

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora
    corecore