335 research outputs found

    FPGA-based implementation of the back-EMF symmetric-threshold-tracking sensorless commutation method for brushless DC-machines

    Get PDF
    The operation of brushless DC permanent-magnet machines requires information of the rotor position to steer the semiconductor switches of the power-supply module which is commonly referred to as Brushless Commutation. Different sensorless techniques have been proposed to estimate the rotor position using current and voltage measurements of the machine. Detection of the back-electromotive force (EMF) zero-crossing moments is one of the methods most used to achieve sensorless control by predicting the commutation moments. Most of the techniques based on this phenomenon have the inherit disadvantage of an indirect detection of commutation moments. This is the result of the commutation moment occurring 30 electrical degrees after the zero-crossing of the induced back-emf in the unexcited phase. Often, the time difference between the zero crossing of the back-emf and the optimal current commutation is assumed constant. This assumption can be valid for steady-state operation, however a varying time difference should be taken into account during transient operation of the BLDC machine. This uncertainty degrades the performance of the drive during transients. To overcome this problem which improves the performance while keeping the simplicity of the back-emf zero-crossing detection method an enhancement is proposed. The proposed sensorless method operates parameterless in a way it uses none of the brushless dc-machine parameters. In this paper different aspects of experimental implementation of the new method as well as various aspects of the FPGA programming are discussed. Proposed control method is implemented within a Xilinx Spartan 3E XC3S500E board

    Evaluation of a dual-T-type converter supplying an open-end winding induction machine

    Get PDF
    The multilevel inverter is a promising technology compared to two-level inverters in the applications of ac-drives and smart-grid applications. In this paper, a dual-T-type three-level inverters is used to drive an open-end winding induction machine. The Space-Vector Pulse-Width Modulation is selected as a good-performing control strategy to control the dual-inverter. Furthermore, an optimized method is used to select the proper switching state for the new configuration to decrease the converter losses. A comparison between the proposed configuration and the conventional diode clamped converter is made. The proposed drive system is designed and modelled by using Matlab/Simulink. It is shown that the converter can give the same hexagon, wave forms and harmonic spectrum of the five level converter. An optimized switching state selection is used to reduce the converter losses. The advantages and drawbacks of the dual-T-type configuration are discussed. In addition, the harmonic analysis and the loss calculations of the dual-T-type converter are provided and compared to the T-type three-level converter and the conventional five-level diode-clamped-converter

    Pharmacokinetics, tissue residues and efficacy of D-Tylo50/25® (tylosin-doxycycline combination) in broiler chickens

    Get PDF
    Background: Pharmacokinetic study of a commercial tylosin-doxycycline combination product (D-Tylo50/25®) was conducted in broiler chickens following intravenous (IV) and oral (PO) administration at doses of 50 mg/kgb. wt. (tylosin) and 25 mg/kg b. wt. (doxycycline).Methods: Serum drug concentrations were determined by a validated high performance liquid chromatography (HPLC) using UV detection.Results: A rapid and nearly complete absorption of both drugs with a mean PO bioavailability of 89.16% (tylosin) and 94.30% (doxycycline), prolonged elimination half-lives, and high tissue penetration with steady state volume of distribution of 6.73L/kg (tylosin) and 5.51L/kg (doxycycline) were observed. Tissue residues were studied following oral administration of each drug alone for fiveconsecutive days and blood and tissue samples were obtained for 10 days after the last dose. Residues of tylosin and doxycyclines showed that kidney, liver and lung contained highest drug residues and completely disappeared from those tissues at 5 and 6 days after the last oral dose, respectively. The efficacies of D-Tylo50/25® and other antibiotics (tiamulin and oxytetracyline) were investigated in broiler chicks experimentally infected by Mycoplasma gallisepticum.Conclusions: The pharmacokinetics of both drugs was characterized by a rapid and complete absorption, extensive tissue distribution and slow elimination. D-Tylo50/25® is more effective than tiamulin and oxytetracycline against Mycoplasma gallisepticum infection in broilers

    Bioequivalence study of two oral amoxicillin formulations (Biocillin® and Atcomox 87%®) in broiler chickens

    Get PDF
    Background: The present study was designed to assess the comparative bioequivalence of Biocillin® and Atcomox87%® in healthy broiler chickens after oral administration of both products in a dose of 20 mg amoxicillin base/kg.b.wt.Methods: Twenty-four broiler chickens were divided into two groups. The first group was designed to study the pharmacokinetics of Biocillin®, while the 2nd group was designed to study the pharmacokinetics of Atcomox87%®. Each broiler chicken in both groups was injected intravenously with 20 mg amoxicillin pure standard/kg.b.wt. After 15 days both groups taken orally Biocillin® and Atcomox87%®, respectively. Blood samples were obtained from the wing vein and collected immediately before and at 0.08, 0.16, 0.25, 0.5, 1, 2, 4, 8, 12 and 24 hours after a single intravenous or oral administration.Results: Amoxicillin in both products obeyed a two compartments open model following I.V. injection. The disposition kinetics of Biocillin® and Atcomox87%® following oral administration of 20 mg amoxicillin base/kg.b.wt. revealed that the maximum blood concentration [Cmax] were 10.79 and 10.30 μg/ml and attained at [tmax] of 0.90 and 0.86 hours, respectively. The mean systemic bioavailability of amoxicillin in Biocillin® and Atcomox 87%® after oral administration in healthy chickens was 64.15 and 65.54%, respectively.Conclusions: Atcomox 87%® is bioequivalent to Biocillin® since the ratios of Cmax, AUC0-24 and AUC0-∞ (T/R) were 0.95, 0.91 and 0.90 respectively. These are within the bioequivalence acceptance range. Biocillin® and Atcomox87%® are therefore bioequivalent and interchangeable

    Bio-equivalence study of two tilmicosin phosphate formulations (Micotil 300® and Cozina 300®) in broiler chickens

    Get PDF
    Background: The present study was designed to assess the comparative bio-equivalence of Micotil 300® and Cozina 300® in healthy broiler chickens after oral administration of both products in a dose of 15 mg tilmicosin base/kg body wt.Methods: Twenty four broiler chickens were divided equally into two groups (12 chickens for each group). The first group was designed to study the pharmacokinetics of Micotil 300®, while the 2nd group was designed to study the pharmacokinetics of Cozina 300®. Each broiler chicken in both groups was orally administered with 15 mg tilmicosin/kg body wt. Blood samples were obtained from the wing vein and collected immediately before and at 0.08, 0.16, 0.25, 0.5, 1, 2, 4, 6, 8, 12 and 24 hours after a single oral administration.Results: The disposition kinetics of Micotil 300® and Cozina 300® following oral administration of 15 mg tilmicosin/kg body wt revealed that the maximum blood concentration [Cmax] were 1.73 and 1.67 μg/ml and attained at [tmax] of 2.01 and 2.04 hours, respectively.Conclusions: Cozina 300® is bioequivalent to Micotil 300® since the ratios of Cmax, AUC0-24 andAUC0-∞ (T/R) were 0.96, 0.93 and 0.91 respectively. These are within the bio-equivalence acceptance range. Micotil 300® and Cozina 300® are therefore bioequivalent and interchangeable

    Tissue Residues, Hematological and Biochemical Effects of Tilmicosin in Broiler Chicken

    Get PDF
    The aim of this study was to determine the blood and tissue concentrations profile and effect of tilmicosin on some hematological and biochemical parameters in broiler chicken. Fifty clinically healthy Hubbard chickens were orally administered 25 mg/kg BW of tilmicosin once daily for 5 consecutive days. Tissue residues of tilmicosin in slaughtered healthy chicken could not be detected by microbiological assay in all tested tissues except in lung (at 96 hours) and liver and kidneys (at 72 hours) after last administration. Tilmicosin caused temporary decrease in the RBCs and WBCs counts and has no effect on hemoglobin (Hb) and packed cell volume concentration (PCV). Also, the effect of tilmicosin on some biochemical parameters was as follows: the concentrations of creatinine, uric acid, electrolytes (sodium, potassium, and calcium), glucose, AST, ALT, ALP, and HDL-cholesterol in the serum of treated chicken did not change in response to the repeated oral administration of tilmicosin. There were only a temporary significant decrease in total protein and albumin concentrations and a significant increase in cholesterol and triglycerides concentrations. Chicken must not be slaughtered before 4 days from the stopping of tilmicosin administration. Tilmicosin makes temporary changes on hematological and biochemical parameters in broiler chicken

    Pharmacokinetics of danofloxacin in African catfish (Clarias gariepinus) after intravenous and intramuscular administrations

    Get PDF
    The plasma pharmacokinetics of danofloxacin was studied in healthy African catfish (Clarias gariepinus) following a single intravenous (IV) and intramuscular (IM) administration of 10 mg/kg at 22 °C. Catfish were divided into two groups (each group containing 78 fish), then danofloxacin mesylate (10 mg/kg) was administered IV (into the caudal vein) in Group 1 and IM (into the right epaxial muscle) in Group 2, and blood was obtained from the caudal vein before (0 h) and after (0.25, 0.5, 1, 2, 4, 8, 12, 24, 36, 48, 72 and 96 h) of drug administration. High-performance liquid chromatography was used for the determination of plasma concentration, and a non-compartmental model was used for the analysis of pharmacokinetic parameters. After IV administration, elimination half-life (t1/2λz, 24.49 h), mean residence time (MRT, 30.14 h), volume of distribution at steady state (Vdss, 1.07 L/kg) and total body clearance (CLT, 0.035 L/h/kg) were determined. After IM administration, t1/2λz, MRT, peak concentration (Cmax), time to reach Cmax and bioavailability were 47.64 h, 61.06 h, 5.22 µg/mL, 1 h and 67.12%, respectively. After IM administration, danofloxacin showed good bioavailability and long t1/2λz. The favourable pharmacokinetic characteristics after IM administration support the use of danofloxacin for the treatment of susceptible bacterial infections in catfish

    Design and analysis of five-level T-type power converters for rotating field drives

    Get PDF
    corecore