103 research outputs found

    Infratentorial superficial siderosis: Classification, diagnostic criteria and rational investigation pathway

    Get PDF
    Central nervous system infratentorial superficial siderosis (iSS) is increasingly detected by blood-sensitive MRI sequences. Despite this, there are no standardized diagnostic criteria, and the clinical-radiological spectrum, causes and optimum investigation strategy are not established. We reviewed clinical and radiological details of patients with iSS assessed at a specialist neurological center from 2004-2016 using pre-defined standardized radiological criteria. All imaging findings were rated blinded to clinical details. We identified 65 patients with iSS, which we classified into two groups: type 1 (classical) and type 2 (secondary) iSS. Type 1 (classical) iSS included 48 patients without any potentially causal radiologically-confirmed spontaneous or traumatic intracranial hemorrhage, of whom 39 (83%) had hearing loss, ataxia or myelopathy; type 2 (secondary) iSS included 17 patients with a potentially causal radiologically-confirmed spontaneous or traumatic intracranial hemorrhage, of whom none had hearing loss, ataxia or myelopathy. Of the patients with type 1 (classical) iSS, 40 (83%) had a potentially causal cranial or spinal dural abnormality; 5 (11%) had an alternative cause; and 3 (6%) had no cause identified. Intra-arterial digital subtraction angiography did not identify any underlying causal lesions for type 1 iSS. Type 1 (classical) iSS, defined using simple radiological criteria, is associated with a characteristic neurological syndrome. Rational investigation, including spinal MRI, nearly always reveals a potential cause, most often a dural abnormality. Catheter angiography appears to be unhelpful, suggesting that classical iSS is not associated with macrovascular arterial pathology. Recognition of type 1 (classical) iSS should allow timely diagnosis and early consideration of treatment

    Immune complex formation impairs the elimination of solutes from the brain: implications for immunotherapy in Alzheimer's disease

    Get PDF
    Background: Basement membranes in the walls of cerebral capillaries and arteries form a major lymphatic drainage pathway for fluid and solutes from the brain. Amyloid-β (Aβ) draining from the brain is deposited in such perivascular pathways as cerebral amyloid angiopathy (CAA) in Alzheimer's disease (AD). CAA increases in severity when Aβ is removed from the brain parenchyma by immunotherapy for AD. In this study we investigated the consequences of immune complexes in artery walls upon drainage of solutes similar to soluble Aβ. We tested the hypothesis that, following active immunization with ovalbumin, immune complexes form within the walls of cerebral arteries and impair the perivascular drainage of solutes from the brain. Mice were immunized against ovalbumin and then challenged by intracerebral microinjection of ovalbumin. Perivascular drainage of solutes was quantified following intracerebral microinjection of soluble fluorescent 3kDa dextran into the brain at different time intervals after intracerebral challenge with ovalbumin. Results: Ovalbumin, IgG and complement C3 co-localized in basement membranes of artery walls 24 hrs after challenge with antigen; this was associated with significantly reduced drainage of dextran in immunized mice. Conclusions: Perivascular drainage along artery walls returned to normal by 7 days. These results indicate that immune complexes form in association with basement membranes of cerebral arteries and interfere transiently with perivascular drainage of solutes from the brain. Immune complexes formed during immunotherapy for AD may similarly impair perivascular drainage of soluble Aβ and increase severity of CAA

    Apolipoprotein E Genotype and Cardiovascular Diseases in the Elderly

    Get PDF
    The apolipoprotein E (APOE) genotype is a genetic risk factor for dementia, Alzheimer’s disease, and cardiovascular disease (CVD). It includes three alleles (e2, e3, e4) that are located on chromosome 19q3.2. The e3 allele is the most common and is more common in people of Northern European ancestry and less common in those of Asian ancestry. Those with at least one e4 allele are at increased risk for CVD outcomes. It is well established that the presence of an e4 allele is linked to higher low-density lipoprotein cholesterol levels, even at young ages. Even though most CVD occurs in older people, there are few studies of the effects of APOE on CVD in older people. This review addresses recent research on the links between APOE, CVD, and vascular mechanisms by which APOE may affect CVD in the elderly

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    The Siblings With Ischemic Stroke Study (SWISS) Protocol

    Get PDF
    BACKGROUND: Family history and twins studies suggest an inherited component to ischemic stroke risk. Candidate gene association studies have been performed but have limited capacity to identify novel risk factor genes. The Siblings With Ischemic Stroke Study (SWISS) aims to conduct a genome-wide scan in sibling pairs concordant or discordant for ischemic stroke to identify novel genetic risk factors through linkage analysis. METHODS: Screening at multiple clinical centers identifies patients (probands) with radiographically confirmed ischemic stroke and a family history of at least 1 living full sibling with stroke. After giving informed consent, without violating privacy among other family members, the proband invites siblings concordant and discordant for stroke to participate. Siblings then contact the study coordinating center. The diagnosis of ischemic stroke in potentially concordant siblings is confirmed by systematic centralized review of medical records. The stroke-free status of potentially discordant siblings is confirmed by validated structured telephone interview. Blood samples for DNA analysis are taken from concordant sibling pairs and, if applicable, from 1 discordant sibling. Epstein-Barr virus-transformed lymphoblastoid cell lines are created, and a scan of the human genome is planned. DISCUSSION: Conducting adequately powered genomics studies of stroke in humans is challenging because of the heterogeneity of the stroke phenotype and the difficulty of obtaining DNA samples from clinically well-characterized members of a cohort of stroke pedigrees. The multicentered design of this study is intended to efficiently assemble a cohort of ischemic stroke pedigrees without invoking community consent or using cold-calling of pedigree members

    The Ischemic Stroke Genetics Study (ISGS) Protocol

    Get PDF
    BACKGROUND: The molecular basis for the genetic risk of ischemic stroke is likely to be multigenic and influenced by environmental factors. Several small case-control studies have suggested associations between ischemic stroke and polymorphisms of genes that code for coagulation cascade proteins and platelet receptors. Our aim is to investigate potential associations between hemostatic gene polymorphisms and ischemic stroke, with particular emphasis on detailed characterization of the phenotype. METHODS/DESIGN: The Ischemic Stroke Genetic Study is a prospective, multicenter genetic association study in adults with recent first-ever ischemic stroke confirmed with computed tomography or magnetic resonance imaging. Patients are evaluated at academic medical centers in the United States and compared with sex- and age-matched controls. Stroke subtypes are determined by central blinded adjudication using standardized, validated mechanistic and syndromic classification systems. The panel of genes to be tested for polymorphisms includes β-fibrinogen and platelet glycoprotein Ia, Iba, and IIb/IIIa. Immortalized cell lines are created to allow for time- and cost-efficient testing of additional candidate genes in the future. DISCUSSION: The study is designed to minimize survival bias and to allow for exploring associations between specific polymorphisms and individual subtypes of ischemic stroke. The data set will also permit the study of genetic determinants of stroke outcome. Having cell lines will permit testing of future candidate risk factor genes

    A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome

    Get PDF
    Down syndrome, caused by an extra copy of chromosome 21, is associated with a greatly increased risk of early onset Alzheimer disease. It is thought that this risk is conferred by the presence of three copies of the gene encoding amyloid precursor protein (APP), an Alzheimer risk factor, although the possession of extra copies of other chromosome 21 genes may also play a role. Further study of the mechanisms underlying the development of Alzheimer disease in Down syndrome could provide insights into the mechanisms that cause dementia in the general population

    Effects of antiplatelet therapy after stroke due to intracerebral haemorrhage (RESTART): a randomised, open-label trial

    Get PDF
    Background: Antiplatelet therapy reduces the risk of major vascular events for people with occlusive vascular disease, although it might increase the risk of intracranial haemorrhage. Patients surviving the commonest subtype of intracranial haemorrhage, intracerebral haemorrhage, are at risk of both haemorrhagic and occlusive vascular events, but whether antiplatelet therapy can be used safely is unclear. We aimed to estimate the relative and absolute effects of antiplatelet therapy on recurrent intracerebral haemorrhage and whether this risk might exceed any reduction of occlusive vascular events. Methods: The REstart or STop Antithrombotics Randomised Trial (RESTART) was a prospective, randomised, open-label, blinded endpoint, parallel-group trial at 122 hospitals in the UK. We recruited adults (≥18 years) who were taking antithrombotic (antiplatelet or anticoagulant) therapy for the prevention of occlusive vascular disease when they developed intracerebral haemorrhage, discontinued antithrombotic therapy, and survived for 24 h. Computerised randomisation incorporating minimisation allocated participants (1:1) to start or avoid antiplatelet therapy. We followed participants for the primary outcome (recurrent symptomatic intracerebral haemorrhage) for up to 5 years. We analysed data from all randomised participants using Cox proportional hazards regression, adjusted for minimisation covariates. This trial is registered with ISRCTN (number ISRCTN71907627). Findings: Between May 22, 2013, and May 31, 2018, 537 participants were recruited a median of 76 days (IQR 29–146) after intracerebral haemorrhage onset: 268 were assigned to start and 269 (one withdrew) to avoid antiplatelet therapy. Participants were followed for a median of 2·0 years (IQR [1·0– 3·0]; completeness 99·3%). 12 (4%) of 268 participants allocated to antiplatelet therapy had recurrence of intracerebral haemorrhage compared with 23 (9%) of 268 participants allocated to avoid antiplatelet therapy (adjusted hazard ratio 0·51 [95% CI 0·25–1·03]; p=0·060). 18 (7%) participants allocated to antiplatelet therapy experienced major haemorrhagic events compared with 25 (9%) participants allocated to avoid antiplatelet therapy (0·71 [0·39–1·30]; p=0·27), and 39 [15%] participants allocated to antiplatelet therapy had major occlusive vascular events compared with 38 [14%] allocated to avoid antiplatelet therapy (1·02 [0·65–1·60]; p=0·92). Interpretation: These results exclude all but a very modest increase in the risk of recurrent intracerebral haemorrhage with antiplatelet therapy for patients on antithrombotic therapy for the prevention of occlusive vascular disease when they developed intracerebral haemorrhage. The risk of recurrent intracerebral haemorrhage is probably too small to exceed the established benefits of antiplatelet therapy for secondary prevention
    • …
    corecore