15 research outputs found

    Segmentation of epidermal tissue with histopathological damage in images of haematoxylin and eosin stained human skin.

    Get PDF
    Background: Digital image analysis has the potential to address issues surrounding traditional histological techniques including a lack of objectivity and high variability, through the application of quantitative analysis. A key initial step in image analysis is the identification of regions of interest. A widely applied methodology is that of segmentation. This paper proposes the application of image analysis techniques to segment skin tissue with varying degrees of histopathological damage. The segmentation of human tissue is challenging as a consequence of the complexity of the tissue structures and inconsistencies in tissue preparation, hence there is a need for a new robust method with the capability to handle the additional challenges materialising from histopathological damage.Methods: A new algorithm has been developed which combines enhanced colour information, created following a transformation to the L*a*b* colourspace, with general image intensity information. A colour normalisation step is included to enhance the algorithm's robustness to variations in the lighting and staining of the input images. The resulting optimised image is subjected to thresholding and the segmentation is fine-tuned using a combination of morphological processing and object classification rules. The segmentation algorithm was tested on 40 digital images of haematoxylin & eosin (H&E) stained skin biopsies. Accuracy, sensitivity and specificity of the algorithmic procedure were assessed through the comparison of the proposed methodology against manual methods.Results: Experimental results show the proposed fully automated methodology segments the epidermis with a mean specificity of 97.7%, a mean sensitivity of 89.4% and a mean accuracy of 96.5%. When a simple user interaction step is included, the specificity increases to 98.0%, the sensitivity to 91.0% and the accuracy to 96.8%. The algorithm segments effectively for different severities of tissue damage.Conclusions: Epidermal segmentation is a crucial first step in a range of applications including melanoma detection and the assessment of histopathological damage in skin. The proposed methodology is able to segment the epidermis with different levels of histological damage. The basic method framework could be applied to segmentation of other epithelial tissues

    Transgenesis in Animal Agriculture: Addressing Animal Health and Welfare Concerns

    Get PDF
    The US Food and Drug Administration’s final Guidance for Industry on the regulation of transgenesis in animal agriculture has paved the way for the commercialization of genetically engineered (GE) farm animals. The production-related diseases associated with extant breeding technologies are reviewed, as well as the predictable welfare consequences of continued emphasis on prolificacy at the potential expense of physical fitness. Areas in which biotechnology could be used to improve the welfare of animals while maintaining profitability are explored along with regulatory schema to improve agency integration in GE animal oversight

    A comprehensive analysis of the thermodynamic events involved in ligand–receptor binding using CoRIA and its variants

    No full text
    Quantitative Structure-Activity Relationships(QSAR) are being used since decades for prediction of biological activity, lead optimization, classification, identification and explanation of the mechanisms of drug action, and prediction of novel structural leads in drug discovery. Though the technique has lived up to its expectations in many aspects, much work still needs to be done in relation to problems related to the rational design of peptides. Peptides are the drugs of choice in many situations, however, designing them rationally is a complicated task and the complexity increases with the length of their sequence. In order to deal with the problem of peptide optimization, one of our recently developed QSAR formalisms CoRIA (Comparative Residue Interaction Analysis) is being expanded and modified as: reverse-CoRIA (rCoRIA) and mixed- CoRIA (mCoRIA) approaches. In these methodologies, the peptide is fragmented into individual units and the interaction energies (van der Waals, Coulombic and hydrophobic) of each amino acid in the peptide with the receptor as a whole(rCoRIA) and with individual active site residues in the receptor (mCoRIA) are calculated, which along with other thermodynamic descriptors, are used as independent variables that are correlated to the biological activity by chemometric methods. As a test case, the three CoRIA methodologies have been validated on a dataset of diverse nonamer peptides that bind to the Class I major histocompatibility complex molecule HLA-A*0201, and for which some structure activity relationships have already been reported. The different models developed, and validated both internally as well as externally, were found to be robust with statistically significant values of r2 (correlation coefficient)and r2 pred (predictive r2). These models were able to identify all the structure activity relationships known for this class of peptides, as well uncover some new relationships. This means that these methodologies will perform well for other peptide datasets too. The major advantage of these approaches is that they explicitly utilize the 3D structures of small molecules or peptides as well as their macromolecular targets, to extract position-specific information about important interactions between the ligand and receptor, which can assist the medicinal and computational chemists in designing new molecules, and biologists in studying the influence of mutations in the target receptor on ligand binding
    corecore