21 research outputs found

    Sun exposure to the eyes: predicted UV protection effectiveness of various sunglasses.

    Get PDF
    The aim of this study was to assess solar ultraviolet radiation (UVR) doses received by the eyes in different exposure situations, and to predict the sun protection effectiveness provided by various styles of sunglasses at facial, periorbital, and ocular skin zones including the cornea and accounting for different head positions. A 3D numeric model was optimized to predict direct, diffuse and reflected erythemally weighted UVR doses received at various skin zones. Precisely defined facial, periorbital, and ocular skin zones, sunglasses (goggles, medium-, and large-sized sunglasses) and three head positions were modeled to simulate daily (08:00-17:00) and midday (12:00-14:00) UVR doses. The shading from sunglasses' frame and lenses' UVR transmission were used to calculate a predictive protection factor (PPF [%]). Highest ocular daily UVR doses were estimated at the uncovered cornea (1718.4 J/m <sup>2</sup> ). Least sun protection was provided by middle-sized sunglasses with highest midday dose at the white lateral (290.8 J/m <sup>2</sup> ) and lateral periorbital zones (390.9 J/m <sup>2</sup> ). Goggles reached almost 100% protection at all skin zones. Large-sized sunglasses were highly effective in winter; however, their effectiveness depended on diffuse UVR doses received. In "looking-up" head positions highest midday UVR doses were received at the unprotected cornea (908.1 J/m <sup>2</sup> ), totally protected when large-sized sunglasses are used. All tested sunglass lenses fully blocked UVR. Sunglasses' protection effectiveness is strongly influenced by geometry, wearing position, head positions, and exposure conditions. Sunglasses do not totally block UVR and should be combined with additional protection means. 3D modeling allows estimating UVR exposure of highly sensitive small skin zones, chronically exposed and rarely assessed

    Definitions and methods of measuring and reporting on injurious falls in randomised controlled fall prevention trials: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The standardisation of the assessment methodology and case definition represents a major precondition for the comparison of study results and the conduction of meta-analyses. International guidelines provide recommendations for the standardisation of falls methodology; however, injurious falls have not been targeted. The aim of the present article was to review systematically the range of case definitions and methods used to measure and report on injurious falls in randomised controlled trials (RCTs) on fall prevention.</p> <p>Methods</p> <p>An electronic literature search of selected comprehensive databases was performed to identify injurious falls definitions in published trials. Inclusion criteria were: RCTs on falls prevention published in English, study population ≥ 65 years, definition of injurious falls as a study endpoint by using the terms "injuries" and "falls".</p> <p>Results</p> <p>The search yielded 2089 articles, 2048 were excluded according to defined inclusion criteria. Forty-one articles were included. The systematic analysis of the methodology applied in RCTs disclosed substantial variations in the definition and methods used to measure and document injurious falls. The limited standardisation hampered comparability of study results. Our results also highlight that studies which used a similar, standardised definition of injurious falls showed comparable outcomes.</p> <p>Conclusions</p> <p>No standard for defining, measuring, and documenting injurious falls could be identified among published RCTs. A standardised injurious falls definition enhances the comparability of study results as demonstrated by a subgroup of RCTs used a similar definition. Recommendations for standardising the methodology are given in the present review.</p

    Occupational exposure to ultraviolet radiation: The duality dilemma

    Get PDF
    Human exposure to ultraviolet (UV) radiation is a component of everyday life and a significant hazard for outdoor workers. In addition, a large range of artificial sources also has the potential to provide extreme occupational UV exposure. Even though the human health risks of overexposure to UV are well documented, to date relatively little is known quantitatively about UV exposure. For example, the evidence indicates that workers who are exposed to particular sources (for example, welding arcs) are exposed to extreme UV exposures, despite the use of current control measures. In contrast, increasing evidence points to significant health impacts resulting from underexposure to UV, particularly with the production (or more correctly lack of production) of vitamin D in the skin. The latter poses a serious issue for the work-force, with specific risks for workers lacking adequate sun exposure-underground miners, long-haul flight crews, shift workers, and perhaps indoor workers. Using a risk-management approach, this paper provides a comprehensive review of occupational UV sources, health impact of occupational UV exposure, occupational exposure standards, and levels of exposure in various settings, and discusses the appropriate control measures. In addition, the duality aspect of health impacts from overexposure and underexposure to UV and the associated occupational health implications are specifically explored

    Fusarium and Fumonisins in Maize in South America

    No full text
    corecore