110 research outputs found

    Li2SnO3 as a Cathode Material for Lithium-ion Batteries:Defects, Lithium Ion Diffusion and Dopants

    Get PDF
    Tin-based oxide Li2SnO3 has attracted considerable interest as a promising cathode material for potential use in rechargeable lithium batteries due to its high- capacity. Static atomistic scale simulations are employed to provide insights into the defect chemistry, doping behaviour and lithium diffusion paths in Li2SnO3. The most favourable intrinsic defect type is Li Frenkel (0.75 eV/defect). The formation of anti-site defect, in which Li and Sn ions exchange their positions is 0.78 eV/defect, very close to the Li Frenkel. The present calculations confirm the cation intermixing found experimentally in Li2SnO3. Long range lithium diffusion paths via vacancy mechanisms were examined and it is confirmed that the lowest activation energy migration path is along the c-axis plane with the overall activation energy of 0.61 eV. Subvalent doping by Al on the Sn site is energetically favourable and is proposed to be an efficient way to increase the Li content in Li2SnO3. The electronic structure calculations show that the introduction of Al will not introduce levels in the band gap

    Unexpected large eruptions from buoyant magma bodies within viscoelastic crust

    Get PDF
    Large volume effusive eruptions with relatively minor observed precursory signals are at odds with widely used models to interpret volcano deformation. Here we propose a new modelling framework that resolves this discrepancy by accounting for magma buoyancy, viscoelastic crustal properties, and sustained magma channels. At low magma accumulation rates, the stability of deep magma bodies is governed by the magma-host rock density contrast and the magma body thickness. During eruptions, inelastic processes including magma mush erosion and thermal effects, can form a sustained channel that supports magma flow, driven by the pressure difference between the magma body and surface vents. At failure onset, it may be difficult to forecast the final eruption volume; pressure in a magma body may drop well below the lithostatic load, create under-pressure and initiate a caldera collapse, despite only modest precursors

    Co-Orientation of Replication and Transcription Preserves Genome Integrity

    Get PDF
    In many bacteria, there is a genome-wide bias towards co-orientation of replication and transcription, with essential and/or highly-expressed genes further enriched co-directionally. We previously found that reversing this bias in the bacterium Bacillus subtilis slows replication elongation, and we proposed that this effect contributes to the evolutionary pressure selecting the transcription-replication co-orientation bias. This selection might have been based purely on selection for speedy replication; alternatively, the slowed replication might actually represent an average of individual replication-disruption events, each of which is counter-selected independently because genome integrity is selected. To differentiate these possibilities and define the precise forces driving this aspect of genome organization, we generated new strains with inversions either over ∼1/4 of the chromosome or at ribosomal RNA (rRNA) operons. Applying mathematical analysis to genomic microarray snapshots, we found that replication rates vary dramatically within the inverted genome. Replication is moderately impeded throughout the inverted region, which results in a small but significant competitive disadvantage in minimal medium. Importantly, replication is strongly obstructed at inverted rRNA loci in rich medium. This obstruction results in disruption of DNA replication, activation of DNA damage responses, loss of genome integrity, and cell death. Our results strongly suggest that preservation of genome integrity drives the evolution of co-orientation of replication and transcription, a conserved feature of genome organization

    Super-resolution:A comprehensive survey

    Get PDF

    ‘Getting the seat of your pants dirty’: space and place in ethnographic educational research

    Get PDF
    In this paper I consider the importance of space and place in ethnographic educational research. The paper draws on research that took place at Educational Video Center (EVC), a non-profit media education centre in New York City (NYC). In this paper I articulate EVC as a place imbued with meaning from the pedagogical practices that take place within and regarding it and argue for a consideration of spatiality in ethnographic educational research. I consider the role of the city landscape in order to identify how knowledge is emplaced and represented through digital, visual technology and conclude by outlining the criticality of spatialising our ethnographic practices
    corecore