24 research outputs found

    On the S-wave piD-scattering length in the relativistic field theory model of the deuteron

    Full text link
    The S-wave scattering length of the strong pion-deuteron (pi D) scattering is calculated in the relativistic field theory model of the deuteron suggested in [1,2].The theoretical result agrees well with the experimental data. The important role of the Delta-resonance contribution to the elastic pi D-scattering is confirmed.Comment: 7 pages, no figures, accepted for publication in Z. Phys.

    Baryon-Baryon Interactions

    Full text link
    After a short survey of some topics of interest in the study of baryon-baryon scattering, the recent Nijmegen energy dependent partial wave analysis (PWA) of the nucleon-nucleon data is reviewed. In this PWA the energy range for both pp and np is now 0 < Tlab < 350 MeV and a chi^2_{d.o.f.}=1.08 was reached. The implications for the pion-nucleon coupling constants are discussed. Comments are made with respect to recent discussions around this coupling constant in the literature. In the second part, we briefly sketch the picture of the baryon in several, more or less QCD-based, quark-models that have been rather prominent in the literature. Inspired by these pictures we constructed a new soft-core model for the nucleon-nucleon interaction and present the first results of this model in a chi^2 -fit to the new multi-energy Nijmegen PWA. With this new model we succeeded in narrowing the gap between theory and experiment at low energies. For the energies Tlab = 25-320 MeV we reached a record low chi^2_{p.d.p.} = 1.16. We finish the paper with some conclusions and an outlook describing the extension of the new model to baryon-baryon scattering.Comment: 12 pages LaTeX and one postscript figure included. Invited talk presented at the XIVth European Conference of Few-Body Problems in Physics, Amsterdam, August 23-28, 199

    Roy-Steiner equations for pion-nucleon scattering

    Get PDF
    Starting from hyperbolic dispersion relations, we derive a closed system of Roy-Steiner equations for pion-nucleon scattering that respects analyticity, unitarity, and crossing symmetry. We work out analytically all kernel functions and unitarity relations required for the lowest partial waves. In order to suppress the dependence on the high-energy regime we also consider once- and twice-subtracted versions of the equations, where we identify the subtraction constants with subthreshold parameters. Assuming Mandelstam analyticity we determine the maximal range of validity of these equations. As a first step towards the solution of the full system we cast the equations for the ππ→NˉN\pi\pi\to\bar NN partial waves into the form of a Muskhelishvili-Omn\`es problem with finite matching point, which we solve numerically in the single-channel approximation. We investigate in detail the role of individual contributions to our solutions and discuss some consequences for the spectral functions of the nucleon electromagnetic form factors.Comment: 106 pages, 18 figures; version published in JHE

    Outcome Measures in Clinical Trials for Multiple Sclerosis

    Get PDF
    corecore