185 research outputs found

    Biological control of Meloidogyne incognita by Trichoderma harzianum and Serratia marcescens and their related enzymatic changes in tomato roots

    Get PDF
    Biological control against the root-knot nematode, Meloidogyne incognita was proven to occur in tomato, Solanum lycopersicom, soil-drenched with different isolates of Trichoderma harzianum and a commercial suspension of Serratia marcescens (Nemaless). The potential of such biocontrol agents to trigger plant defense response was discussed. Nematode reproduction in the presence of such possibly induced systemic resistance (ISR) elicitors was compared with that occurring on untreated plants and treated plants with the carbofuran nematicide. Dosages used were for carbofuran (1 mg ai/kg soil) and for S. marcescens (1 ~ 109 bacterium cells/ml water) 2 ml suspension/kg soil; three different T. harzianum isolates (f1, f3 and f8) were separately added at 50 ~ 10Sup>8 CFU/kg soil. The possible ISR elicitors were tested on two tomato cultivars (Super Strain B and Alisa), which were inoculated with active juveniles (J2) of M. incognita, and plants were kept in a glasshouse. Indices of plant fitness (PFs) resulting from each treatment, which took into account various growth parameters were also determined. Carbofuran followed by S. marcescens and T. harzianum significantly decreased (P . 0.05) nematode development and reproduction when compared with the untreated controls. PF of cv. Alisa was higher than that of Super Strain B, and M. incognita reproduced better on the latter cultivar in all treatments. Polyphenol oxidase (PPO) and β-1,3-glucanase (GLUC) activities were detected in the roots of inoculated and uninoculated control tomato plants. Similar tests were carried out on inoculated plants treated with such ISR elicitors to search for possible enzyme activity changes as a result of resistance induction. Nematode infection did not cause any significant changes in GLUC activity, whilst PPO activity was enhanced in inoculated with respect to uninoculated roots. Treatments with ISR elicitors and carbofuran did not significantly change GLUC activity in both inoculated plants and uninoculated controls. While in the presence of the ISR elicitors, generally, PPO activity did not increase as a result of nematode infestation.Key words: Enzymatic induction, root-knot nematode, nematode management, Serratia marcescens, Trichoderma harzianum, biological control, carbofuran, nematicide, polyphenol oxidase, β-1,3-glucanase, Solanum lycopersicum

    Inverse Association between trans Isomeric and Long-Chain Polyunsaturated Fatty Acids in Pregnant Women and Their Newborns: Data from Three European Countries

    Get PDF
    Background: trans unsaturated fatty acids are thought to interfere with essential fatty acid metabolism. To extend our knowledge of this phenomenon, we investigated the relationship between trans isomeric and long-chain polyunsaturated fatty acids (LCPUFA) in mothers during pregnancy and in their infants at birth. Methods: Fatty acid composition of erythrocyte phosphatidylcholine (PC) and phosphatidylethanolamine (PE) was determined in Spanish (n = 120), German (n = 78) and Hungarian (n = 43) women at the 20th and 30th week of gestation, at delivery and in their newborns. Results: At the 20th week of gestation, the sum of trans fatty acids in PE was significantly (p < 0.01) lower in Hungarian [0.73 (0.51), % wt/wt, median (IQR)] than in Spanish [1.42 (1.36)] and German [1.30 (1.21)] women. Docosahexaenoic acid (DHA) values in PE were significantly (p < 0.01) higher in Hungarian {[}5.65 (2.09)] than in Spanish [4.37 (2.60)] or German [4.39 (3.3.2)] women. The sum of trans fatty acids significantly inversely correlated to DHA in PCs in Spanish (r = -0.37, p < 0.001), German (n = -0.77, p < 0.001) and Hungarian (r = -0.35, p < 0.05) women, and in PEs in Spanish (r = -0.67, p < 0.001) and German (r = -0.71, p < 0.001), but not in Hungarian (r = -0.02) women. Significant inverse correlations were seen between trans fatty acids and DHA in PEs at the 30th week of gestation (n = 241, r = -0.52, p < 0.001), at delivery (n = 241, r = -0.40, p < 0.001) and in cord lipids (n = 218, r = -0.28, p < 0.001). Conclusion: Because humans cannot synthesize trans isomeric fatty acids, the data obtained in the present study support the concept that high maternal trans isomeric fatty acid intake may interfere with the availability of LCPUFA both for the mother and the fetus. Copyright (C) 2011 S. Karger AG, Base

    Characterising the inhibitory actions of ceramide upon insulin signaling in different skeletal muscle cell models:a mechanistic insight

    Get PDF
    International audienceCeramides are known to promote insulin resistance in a number of metabolically important tissues including skeletal muscle, the predominant site of insulin-stimulated glucose disposal. Depending on cell type, these lipid intermediates have been shown to inhibit protein kinase B (PKB/Akt), a key mediator of the metabolic actions of insulin, via two distinct pathways: one involving the action of atypical protein kinase C (aPKC) isoforms, and the second dependent on protein phosphatase-2A (PP2A). The main aim of this study was to explore the mechanisms by which ceramide inhibits PKB/Akt in three different skeletal muscle-derived cell culture models; rat L6 myotubes, mouse C2C12 myotubes and primary human skeletal muscle cells. Our findings indicate that the mechanism by which ceramide acts to repress PKB/Akt is related to the myocellular abundance of caveolin-enriched domains (CEM) present at the plasma membrane. Here, we show that ceramide-enriched-CEMs are markedly more abundant in L6 myotubes compared to C2C12 myotubes, consistent with their previously reported role in coordinating aPKC-directed repression of PKB/Akt in L6 muscle cells. In contrast, a PP2A-dependent pathway predominantly mediates ceramide-induced inhibition of PKB/Akt in C2C12 myotubes. In addition, we demonstrate for the first time that ceramide engages an aPKC-dependent pathway to suppress insulin-induced PKB/Akt activation in palmitate-treated cultured human muscle cells as well as in muscle cells from diabetic patients. Collectively, this work identifies key mechanistic differences, which may be linked to variations in plasma membrane composition, underlying the insulin-desensitising effects of ceramide in different skeletal muscle cell models that are extensively used in signal transduction and metabolic studies

    Transcriptional Downregulation of Rice rpL32 Gene under Abiotic Stress Is Associated with Removal of Transcription Factors within the Promoter Region

    Get PDF
    Background: The regulation of ribosomal proteins in plants under stress conditions has not been well studied. Although a few reports have shown stress-specific post-transcriptional and translational mechanisms involved in downregulation of ribosomal proteins yet stress-responsive transcriptional regulation of ribosomal proteins is largely unknown in plants. Methodology/Principal Findings: In the present work, transcriptional regulation of genes encoding rice 60S ribosomal protein L32 (rpL32) in response to salt stress has been studied. Northern and RT-PCR analyses showed a significant downregulation of rpL32 transcripts under abiotic stress conditions in rice. Of the four rpL32 genes in rice genome, the gene on chromosome 8 (rpL32_8.1) showed a higher degree of stress-responsive downregulation in salt sensitive rice variety than in tolerant one and its expression reverted to its original level upon withdrawal of stress. The nuclear run-on and promoter:reporter assays revealed that the downregulation of this gene is transcriptional and originates within the promoter region. Using in vivo footprinting and electrophoretic mobility shift assay (EMSA), cis-elements in the promoter of rpL32_8.1 showing reduced binding to proteins in shoots of salt stressed rice seedlings were identified. Conclusions: The present work is one of the few reports on study of stress downregulated genes. The data revealed that rpL32 gene is transcriptionally downregulated under abiotic stress in rice and that this transcriptional downregulation i

    Potential biological role of poly (ADP-ribose) polymerase (PARP) in male gametes

    Get PDF
    Maintaining the integrity of sperm DNA is vital to reproduction and male fertility. Sperm contain a number of molecules and pathways for the repair of base excision, base mismatches and DNA strand breaks. The presence of Poly (ADP-ribose) polymerase (PARP), a DNA repair enzyme, and its homologues has recently been shown in male germ cells, specifically during stage VII of spermatogenesis. High PARP expression has been reported in mature spermatozoa and in proven fertile men. Whenever there are strand breaks in sperm DNA due to oxidative stress, chromatin remodeling or cell death, PARP is activated. However, the cleavage of PARP by caspase-3 inactivates it and inhibits PARP's DNA-repairing abilities. Therefore, cleaved PARP (cPARP) may be considered a marker of apoptosis. The presence of higher levels of cPARP in sperm of infertile men adds a new proof for the correlation between apoptosis and male infertility. This review describes the possible biological significance of PARP in mammalian cells with the focus on male reproduction. The review elaborates on the role played by PARP during spermatogenesis, sperm maturation in ejaculated spermatozoa and the potential role of PARP as new marker of sperm damage. PARP could provide new strategies to preserve fertility in cancer patients subjected to genotoxic stresses and may be a key to better male reproductive health

    The OSU1/QUA2/TSD2-Encoded Putative Methyltransferase Is a Critical Modulator of Carbon and Nitrogen Nutrient Balance Response in Arabidopsis

    Get PDF
    The balance between carbon (C) and nitrogen (N) nutrients must be tightly coordinated so that cells can optimize their opportunity for metabolism, growth and development. However, the C and N nutrient balance perception and signaling mechanism remains poorly understood. Here, we report the isolation and characterization of two allelic oversensitive to sugar1 mutants (osu1-1, osu1-2) in Arabidopsis thaliana. Using the cotyledon anthocyanin accumulation and root growth inhibition assays, we show that the osu1 mutants are more sensitive than wild-type to both of the imbalanced C/N conditions, high C/low N and low C/high N. However, under the balanced C/N conditions (low C/low N or high C/high N), the osu1 mutants have similar anthocyanin levels and root lengths as wild-type. Consistently, the genes encoding two MYB transcription factors (MYB75 and MYB90) and an Asn synthetase isoform (ASN1) are strongly up-regulated by the OSU1 mutation in response to high C/low N and low C/high N, respectively. Furthermore, the enhanced sensitivity of osu1-1 to high C/low N with respect to anthocyanin accumulation but not root growth inhibition can be suppressed by co-suppression of MYB75, indicating that MYB75 acts downstream of OSU1 in the high C/low N imbalance response. Map-based cloning reveals that OSU1 encodes a member of a large family of putative methyltransferases and is allelic to the recently reported QUA2/TSD2 locus identified in genetic screens for cell-adhesion-defective mutants. Accumulation of OSU1/QUA2/TSD2 transcript was not regulated by C and N balance, but the OSU1 promoter was slightly more active in the vascular system. Taken together, our results show that the OSU1/QUA2/TSD2-encoded putative methyltransferase is required for normal C/N nutrient balance response in plants
    corecore