20 research outputs found

    Novel probes for pH and dissolved oxygen measurements in cultivations from millilitre to benchtop scale

    Get PDF
    Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch)pH value and the concentration of dissolved oxygen (DO) are key parameters to monitor and control cell growth in cultivation studies. Reliable, robust and accurate methods to measure these parameters in cultivation systems in real time guarantee high product yield and quality. This mini-review summarises the current state of the art of pH and DO sensors that are applied to bioprocesses from millilitre to benchtop scale by means of a short introduction on measuring principles and selected applications. Special emphasis is placed on single-use bioreactors, which have been increasingly employed in bioprocess development and production in recent years. Working principles, applications and the particular requirements of sensors in these cultivation systems are given. In such processes, optical sensors for pH and DO are often preferred to electrochemical probes, as they allow semi-invasive measurements and can be miniaturised to micrometre scale or lower. In addition, selected measuring principles of novel sensing technologies for pH and DO are discussed. These include solid-state sensors and miniaturised devices that are not yet commercially available, but show promising characteristics for possible use in bioprocesses in the near future

    Pattern Formation in a Synthetic Microbial Pathway

    No full text

    Blind Parallel Interrogation of Ultrasonic Neural Dust Motes Based on Canonical Polyadic Decomposition: a Simulation Study

    No full text
    © EURASIP 2017. Neural dust (ND) is a wireless ultrasonic backscatter system for communicating with implanted sensor devices, re-ferred to as ND motes (NDMs). Due to its scalability, ND could allow to chronically record electro-physiological signals in the brain cortex at a micro-scale pitch. The free-floating NDMs are read out by an array of ultrasonic (US) transducers through passive backscattering, by sequentially steering a US beam to the target NDM. In order to perform such beam steering, the NDM positions or the channels between the NDMs and the US transducers have to be estimated, which is a non-trivial task. Furthermore, such a sequential beam steering approach is too slow to sample a dense ND grid with a sufficiently high sampling rate. In this paper, we propose a new ND interrogation scheme which is fast enough to completely sample the entire ND grid, and which does not need any information on the NDM positions or the per-NDM channel characteristics. For each sample time, the US transducers transmit only a few grid-wide US beams to the entire ND grid, in which case the reflected beams will consist of mixtures of multiple NDM signals. We arrange the demodulated backscattered signals in a 3-way tensor, and then use a canonical polyadic decomposition (CPD) to blindly estimate the neural signals from each underlying NDM. Based on a validated simulation model, we demonstrate that this new CPD-based interrogation scheme allows to reconstruct the neural signals from the entire ND grid with a sufficiently high accuracy, even at relatively low SNR regimes.status: publishe

    Beamforming approaches for untethered, ultrasonic neural dust motes for cortical recording : a simulation study

    Get PDF
    In this paper, we examine the use of beamforming techniques to interrogate a multitude of neural implants in a distributed, ultrasound-based intra-cortical recording platform known as Neural Dust. We propose a general framework to analyze system design tradeoffs in the ultrasonic beamformer that extracts neural signals from modulated ultrasound waves that are backscattered by free-floating neural dust (ND) motes. Simulations indicate that high-resolution linearly-constrained minimum variance beamforming sufficiently suppresses interference from unselected ND motes and can be incorporated into the ND-based cortical recording system.status: publishe

    Polar-opposite fates

    No full text
    corecore