10 research outputs found

    Regulatory Role of Cannabinoid Receptor 1 in Stress-Induced Excitotoxicity and Neuroinflammation

    Get PDF
    Exposure to stress elicits excitoxicity and neuroinflammation in the brain, contributing to cell death and damage in stress-related neurological and neuropsychiatric diseases. The endocannabinoid system is present in stress-responsive neural circuits and has been proposed as an endogenous neuroprotective system activated in some neuropathological scenarios to restore homeostasis. To elucidate the possible regulatory role of cannabinoid receptor 1 (CB1) in stress-induced excitotoxicity and neuroinflammation, both genetic and pharmacological approaches were used alternatively: (1) wild-type (WT) and CB1 knockout mice (CB1-KO) were exposed to immobilization/acoustic stress (2 h/day for 4 days) and (2) to specifically activate CB1, the selective CB1 agonist Arachidonyl-2′-chloroethylamide (ACEA) (2.5 mg/kg) was intraperitoneally administered daily to some groups of animals. Stress exposure increased CB1 mRNA and protein expression in the prefrontal cortex of WT mice in a mechanism related to N-methyl--aspartate glutamate receptor activation. Daily ACEA pretreatment prevented stress-induced: (1) upregulation of CB1 mRNA and protein, (2) decrease in glutamate uptake and glutamate astroglial transporter excitatory amino acid transporter 2 expression, (3) increase in consecutive proinflammatory molecules, such as cytokines (tumor necrosis factor-α and MCP-1), nuclear factor kappa B, and enzymatic sources, such as inducible nitric oxide synthase (NOS-2) and cyclooxygenase-2 (COX-2), (4) increase in lipid peroxidation; although having no effect on plasma corticosterone. Interestingly, a possible related mechanism could be the positive ACEA modulation of the antiinflammatory pathway deoxyprostaglandin/peroxisome proliferator-activated receptor γ (15d-PGJ2/PPARγ). Conversely, KO animal experiments indicated that a lack of CB1 produces hypothalamic/pituitary/adrenal (HPA) axis dysregulation and exacerbates stress-induced excitotoxic/neuroinflammatory responses. These multifaceted neuroprotective effects suggest that CB1 activation could be a new therapeutic strategy against neurological/neuropsychiatric pathologies with HPA axis dysregulation and an excitotoxic/neuroinflammatory component in their pathophysiology

    Aging, immunity, and neuroinflammation: The modulatory potential of nutrition

    No full text

    Global assessment of seasonal potential distribution of Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae)

    No full text
    The Mediterranean fruit fly (Medfly) is one of the world's most economically damaging pests. It displays highly seasonal population dynamics, and the environmental conditions suitable for its abundance are not constant throughout the year in most places. An extensive literature search was performed to obtain the most comprehensive data on the historical and contemporary spatio-temporal occurrence of the pest globally. The database constructed contained 2328 unique geo-located entries on Medfly detection sites from 43 countries and nearly 500 unique localities, as well as information on hosts, life stages and capture method. Of these, 125 localities had information on the month when Medfly was recorded and these data were complemented by additional material found in comprehensive databases available online. Records from 1980 until present were used for medfly environmental niche modeling. Maximum Entropy Algorithm (MaxEnt) and a set of seasonally varying environmental covariates were used to predict the fundamental niche of the Medfly on a global scale. Three seasonal maps were also produced: January-April, May-August and September-December. Models performed significantly better than random achieving high accuracy scores, indicating a good discrimination of suitable versus unsuitable areas for the presence of the species

    Recent advances toward the sustainable management of invasive Xylosandrus ambrosia beetles

    No full text

    Mass Trapping for Fruit Fly Control

    No full text

    Oxidative and nitrosative stress pathways in the brain of socially isolated adult male rats demonstrating depressive- and anxiety-like symptoms

    No full text
    corecore