57 research outputs found

    Cadmium, zinc and iron interactions in the tissues of bank vole Clethrionomys glareolus after exposure to low and high doses of cadmium chloride

    Get PDF
    In present study, bank voles Clethrionomys glareolus were peritioneally injected with different doses of cadmium, 0, 1.5, 3.0 mg Cd/kg body mass. Animals were sacrificed on the 21st day after cadmium exposure and the liver and kidney were obtained for cadmium, zinc and iron analysis using atomic absorption spectrometry. Results showed that cadmium had accumulated in the tissues according to dosage and sex. Cadmium affected the survival and body masses of dosed females. Cadmium decreased the iron concentrations in the liver of voles, whereas zinc concentrations increased in both the kidney and liver

    A comparative study of biodegradation of vinyl acetate by environmental strains

    Get PDF
    Four Gram-negative strains, E3_2001, EC1_2004, EC3_3502 and EC2_3502, previously isolated from soil samples, were subjected to comparative studies in order to select the best vinyl acetate degrader for waste gas treatment. Comparison of biochemical and physiological tests as well as the results of fatty acids analyses were comparable with the results of 16S rRNA gene sequence analyses. The isolated strains were identified as Pseudomonas putida EC3_2001, Pseudomonas putida EC1_2004, Achromobacter xylosoxidans EC3_3502 and Agrobacterium sp. EC2_3502 strains. Two additional strains, Pseudomonas fluorescens PCM 2123 and Stenotrophomonas malthophilia KB2, were used as controls. All described strains were able to use vinyl acetate as the only source of carbon and energy under aerobic as well as oxygen deficiency conditions. Esterase, alcohol dehydrogenase and aldehyde dehydrogenase were involved in vinyl acetate decomposition under aerobic conditions. Shorter degradation times of vinyl acetate were associated with accumulation of acetic acid, acetaldehyde and ethanol as intermediates in the culture fluids of EC3_2001 and KB2 strains. Complete aerobic degradation of vinyl acetate combined with a low increase in biomass was observed for EC3_2001 and EC1_2004 strains. In conclusion, P. putida EC1_2004 is proposed as the best vinyl acetate degrader for future waste gas treatment in trickle-bed bioreactors

    Induction of aromatic ring: cleavage dioxygenases in Stenotrophomonas maltophilia strain KB2 in cometabolic systems

    Get PDF
    Stenotrophomonas maltophilia KB2 is known to produce different enzymes of dioxygenase family. The aim of our studies was to determine activity of these enzymes after induction by benzoic acids in cometabolic systems with nitrophenols. We have shown that under cometabolic conditions KB2 strain degraded 0.25–0.4 mM of nitrophenols after 14 days of incubation. Simultaneously degradation of 3 mM of growth substrate during 1–3 days was observed depending on substrate as well as cometabolite used. From cometabolic systems with nitrophenols as cometabolites and 3,4-dihydroxybenzoate as a growth substrate, dioxygenases with the highest activity of protocatechuate 3,4-dioxygenase were isolated. Activity of catechol 1,2- dioxygenase and protocatechuate 4,5-dioxygenase was not observed. Catechol 2,3-dioxygenase was active only in cultures with 4-nitrophenol. Ability of KB2 strain to induce and synthesize various dioxygenases depending on substrate present in medium makes this strain useful in bioremediation of sites contaminated with different aromatic compounds

    A genistein derivative, ITB-301, induces microtubule depolymerization and mitotic arrest in multidrug-resistant ovarian cancer

    Get PDF
    PURPOSE: To investigate the mechanistic basis of the anti-tumor effect of the compound ITB-301. METHODS: Chemical modifications of genistein have been introduced to improve its solubility and efficacy. The anti-tumor effects were tested in ovarian cancer cells using proliferation assays, cell cycle analysis, immunofluorescence, and microscopy. RESULTS: In this work, we show that a unique glycoside of genistein, ITB-301, inhibits the proliferation of SKOv3 ovarian cancer cells. We found that the 50% growth inhibitory concentration of ITB-301 in SKOv3 cells was 0.5 μM. Similar results were obtained in breast cancer, ovarian cancer, and acute myelogenous leukemia cell lines. ITB-301 induced significant time- and dose-dependent microtubule depolymerization. This depolymerization resulted in mitotic arrest and inhibited proliferation in all ovarian cancer cell lines examined including SKOv3, ES2, HeyA8, and HeyA8-MDR cells. The cytotoxic effect of ITB-301 was dependent on its induction of mitotic arrest as siRNA-mediated depletion of BUBR1 significantly reduced the cytotoxic effects of ITB-301, even at a concentration of 10 μM. Importantly, efflux-mediated drug resistance did not alter the cytotoxic effect of ITB-301 in two independent cancer cell models of drug resistance. CONCLUSION: These results identify ITB-301 as a novel anti-tubulin agent that could be used in cancers that are multidrug resistant. We propose a structural model for the binding of ITB-301 to α- and β-tubulin dimers on the basis of molecular docking simulations. This model provides a rationale for future work aimed at designing of more potent analogs

    Telomeric DNA induces apoptosis and senescence of human breast carcinoma cells

    Get PDF
    INTRODUCTION: Cancer is a leading cause of death in Americans. We have identified an inducible cancer avoidance mechanism in cells that reduces mutation rate, reduces and delays carcinogenesis after carcinogen exposure, and induces apoptosis and/or senescence of already transformed cells by simultaneously activating multiple overlapping and redundant DNA damage response pathways. METHODS: The human breast carcinoma cell line MCF-7, the adriamycin-resistant MCF-7 (Adr/MCF-7) cell line, as well as normal human mammary epithelial (NME) cells were treated with DNA oligonucleotides homologous to the telomere 3' overhang (T-oligos). SCID mice received intravenous injections of MCF-7 cells followed by intravenous administration of T-oligos. RESULTS: Acting through ataxia telangiectasia mutated (ATM) and its downstream effectors, T-oligos induced apoptosis and senescence of MCF-7 cells but not NME cells, in which these signaling pathways were induced to a far lesser extent. In MCF-7 cells, experimental telomere loop disruption caused identical responses, consistent with the hypothesis that T-oligos act by mimicking telomere overhang exposure. In vivo, T-oligos greatly prolonged survival of SCID mice following intravenous injection of human breast carcinoma cells. CONCLUSION: By inducing DNA damage-like responses in MCF-7 cells, T-oligos provide insight into innate cancer avoidance mechanisms and may offer a novel approach to treatment of breast cancer and other malignancies
    corecore