669 research outputs found

    Scalable High-Affinity Stabilization of Magnetic Iron Oxide Nanostructures by a Biocompatible Antifouling Homopolymer

    Get PDF
    Iron oxide nanostructures have been widely developed for biomedical applications because of their magnetic properties and biocompatibility. In clinical applications, stabilization of these nanostructures against aggregation and nonspecific interactions is typically achieved using weakly anchored polysaccharides, with better-defined and more strongly anchored synthetic polymers not commercially adopted because of their complexity of synthesis and use. Here, we show for the first time stabilization and biocompatibilization of iron oxide nanoparticles by a synthetic homopolymer with strong surface anchoring and a history of clinical use in other applications, poly(2-methacryloyloxyethyl phosphorylcholine) [poly(MPC)]. For the commercially important case of spherical particles, binding of poly(MPC) to iron oxide surfaces and highly effective individualization of magnetite nanoparticles (20 nm) are demonstrated. Next-generation high-aspect-ratio nanowires (both magnetite/maghemite and core–shell iron/iron oxide) are, furthermore, stabilized by poly(MPC) coating, with the nanowire cytotoxicity at large concentrations significantly reduced. The synthesis approach exploited to incorporate functionality into the poly(MPC) chain is demonstrated by random copolymerization with an alkyne-containing monomer for click chemistry. Taking these results together, poly(MPC) homopolymers and random copolymers offer a significant improvement over current iron oxide nanoformulations, combining straightforward synthesis, strong surface anchoring, and well-defined molecular weight

    Scalable High-Affinity Stabilization of Magnetic Iron Oxide Nanostructures by a Biocompatible Antifouling Homopolymer

    Get PDF
    Iron oxide nanostructures have been widely developed for biomedical applications because of their magnetic properties and biocompatibility. In clinical applications, stabilization of these nanostructures against aggregation and nonspecific interactions is typically achieved using weakly anchored polysaccharides, with better-defined and more strongly anchored synthetic polymers not commercially adopted because of their complexity of synthesis and use. Here, we show for the first time stabilization and biocompatibilization of iron oxide nanoparticles by a synthetic homopolymer with strong surface anchoring and a history of clinical use in other applications, poly(2-methacryloyloxyethyl phosphorylcholine) [poly(MPC)]. For the commercially important case of spherical particles, binding of poly(MPC) to iron oxide surfaces and highly effective individualization of magnetite nanoparticles (20 nm) are demonstrated. Next-generation high-aspect-ratio nanowires (both magnetite/maghemite and core–shell iron/iron oxide) are, furthermore, stabilized by poly(MPC) coating, with the nanowire cytotoxicity at large concentrations significantly reduced. The synthesis approach exploited to incorporate functionality into the poly(MPC) chain is demonstrated by random copolymerization with an alkyne-containing monomer for click chemistry. Taking these results together, poly(MPC) homopolymers and random copolymers offer a significant improvement over current iron oxide nanoformulations, combining straightforward synthesis, strong surface anchoring, and well-defined molecular weight

    Neurobehavioral consequences of chronic intrauterine opioid exposure in infants and preschool children: a systematic review and meta-analysis

    Get PDF
    <b>Background</b><p></p> It is assumed within the accumulated literature that children born of pregnant opioid dependent mothers have impaired neurobehavioral function as a consequence of chronic intrauterine opioid use.<p></p> <b>Methods</b><p></p> Quantitative and systematic review of the literature on the consequences of chronic maternal opioid use during pregnancy on neurobehavioral function of children was conducted using the Meta-analysis of Observational Studies in Epidemiology (MOOSE) and the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. We searched Cinahl, EMBASE, PsychINFO and MEDLINE between the periods of January 1995 to January 2012.<p></p> <b>Results</b><p></p> There were only 5 studies out of the 200 identified that quantitatively reported on neurobehavioral function of children after maternal opioid use during pregnancy. All 5 were case control studies with the number of exposed subjects within the studies ranging from 33–143 and 45–85 for the controls. This meta-analysis showed no significant impairments, at a non-conservative significance level of p < 0.05, for cognitive, psychomotor or observed behavioural outcomes for chronic intra-uterine exposed infants and pre-school children compared to non-exposed infants and children. However, all domains suggested a trend to poor outcomes in infants/children of opioid using mothers. The magnitude of all possible effects was small according to Cohen’s benchmark criteria.<p></p> <b>Conclusions</b><p></p> Chronic intra-uterine opioid exposed infants and pre-school children experienced no significant impairment in neurobehavioral outcomes when compared to non-exposed peers, although in all domains there was a trend to poorer outcomes. The findings of this review are limited by the small number of studies analysed, the heterogenous populations and small numbers within the individual studies. Longitudinal studies are needed to determine if any neuropsychological impairments appear after the age of 5 years and to help investigate further the role of environmental risk factors on the effect of ‘core’ phenotypes
    • …
    corecore