84 research outputs found

    As Far as the Eye Can See: Relationship between Psychopathic Traits and Pupil Response to Affective Stimuli

    Get PDF
    Psychopathic individuals show a range of affective processing deficits, typically associated with the interpersonal/affective component of psychopathy. However, previous research has been inconsistent as to whether psychopathy, within both offender and community populations, is associated with deficient autonomic responses to the simple presentation of affective stimuli. Changes in pupil diameter occur in response to emotionally arousing stimuli and can be used as an objective indicator of physiological reactivity to emotion. This study used pupillometry to explore whether psychopathic traits within a community sample were associated with hypo-responsivity to the affective content of stimuli. Pupil activity was recorded for 102 adult (52 female) community participants in response to affective (both negative and positive affect) and affectively neutral stimuli, that included images of scenes, static facial expressions, dynamic facial expressions and sound-clips. Psychopathic traits were measured using the Triarchic Psychopathy Measure. Pupil diameter was larger in response to negative stimuli, but comparable pupil size was demonstrated across pleasant and neutral stimuli. A linear relationship between subjective arousal and pupil diameter was found in response to sound-clips, but was not evident in response to scenes. Contrary to predictions, psychopathy was unrelated to emotional modulation of pupil diameter across all stimuli. The findings were the same when participant gender was considered. This suggests that psychopathy within a community sample is not associated with autonomic hypo-responsivity to affective stimuli, and this effect is discussed in relation to later defensive/appetitive mobilisation deficits

    Automatic prediction of catalytic residues by modeling residue structural neighborhood

    Get PDF
    Background: Prediction of catalytic residues is a major step in characterizing the function of enzymes. In its simpler formulation, the problem can be cast into a binary classification task at the residue level, by predicting whether the residue is directly involved in the catalytic process. The task is quite hard also when structural information is available, due to the rather wide range of roles a functional residue can play and to the large imbalance between the number of catalytic and non-catalytic residues.Results: We developed an effective representation of structural information by modeling spherical regions around candidate residues, and extracting statistics on the properties of their content such as physico-chemical properties, atomic density, flexibility, presence of water molecules. We trained an SVM classifier combining our features with sequence-based information and previously developed 3D features, and compared its performance with the most recent state-of-the-art approaches on different benchmark datasets. We further analyzed the discriminant power of the information provided by the presence of heterogens in the residue neighborhood.Conclusions: Our structure-based method achieves consistent improvements on all tested datasets over both sequence-based and structure-based state-of-the-art approaches. Structural neighborhood information is shown to be responsible for such results, and predicting the presence of nearby heterogens seems to be a promising direction for further improvements.Journal ArticleResearch Support, N.I.H. Extramuralinfo:eu-repo/semantics/publishe

    Investigation of Atomic Level Patterns in Protein—Small Ligand Interactions

    Get PDF
    BACKGROUND: Shape complementarity and non-covalent interactions are believed to drive protein-ligand interaction. To date protein-protein, protein-DNA, and protein-RNA interactions were systematically investigated, which is in contrast to interactions with small ligands. We investigate the role of covalent and non-covalent bonds in protein-small ligand interactions using a comprehensive dataset of 2,320 complexes. METHODOLOGY AND PRINCIPAL FINDINGS: We show that protein-ligand interactions are governed by different forces for different ligand types, i.e., protein-organic compound interactions are governed by hydrogen bonds, van der Waals contacts, and covalent bonds; protein-metal ion interactions are dominated by electrostatic force and coordination bonds; protein-anion interactions are established with electrostatic force, hydrogen bonds, and van der Waals contacts; and protein-inorganic cluster interactions are driven by coordination bonds. We extracted several frequently occurring atomic-level patterns concerning these interactions. For instance, 73% of investigated covalent bonds were summarized with just three patterns in which bonds are formed between thiol of Cys and carbon or sulfur atoms of ligands, and nitrogen of Lys and carbon of ligands. Similar patterns were found for the coordination bonds. Hydrogen bonds occur in 67% of protein-organic compound complexes and 66% of them are formed between NH- group of protein residues and oxygen atom of ligands. We quantify relative abundance of specific interaction types and discuss their characteristic features. The extracted protein-organic compound patterns are shown to complement and improve a geometric approach for prediction of binding sites. CONCLUSIONS AND SIGNIFICANCE: We show that for a given type (group) of ligands and type of the interaction force, majority of protein-ligand interactions are repetitive and could be summarized with several simple atomic-level patterns. We summarize and analyze 10 frequently occurring interaction patterns that cover 56% of all considered complexes and we show a practical application for the patterns that concerns interactions with organic compounds

    Quantitative comparison of catalytic mechanisms and overall reactions in convergently evolved enzymes : implications for classification of enzyme function

    Get PDF
    The authors thank the National Institutes of Health (NIH R01 GM60595 to PCB) and the Scottish Universities Life Sciences Alliance (SULSA to JBOM) for funding.Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation.Peer reviewe

    The insect pathogenic bacterium Xenorhabdus innexi has attenuated virulence in multiple insect model hosts yet encodes a potent mosquitocidal toxin

    Get PDF
    corecore