5 research outputs found

    Doubling of marine dinitrogen-fixation rates based on direct measurements

    Get PDF
    Biological dinitrogen fixation provides the largest input of nitrogen to the oceans, therefore exerting important control on the ocean’s nitrogen inventory and primary productivity. Nitrogen-isotope data fromocean sediments suggest that the marine-nitrogen inventory has been balanced for the past 3,000 years (ref. 4). Producing a balanced marine-nitrogenbudget based on direct measurements has proved difficult, however, with nitrogen loss exceeding the gain from dinitrogen fixation by approximately 200 TgNyr-1 (refs 5, 6). Here we present data from the Atlantic Ocean and show that the most widely used method of measuring oceanic N2-fixation rates underestimates the contribution of N2-fixing microorganisms (diazotrophs) relative to a newly developed method. Using molecular techniques to quantify the abundance of specific clades of diazotrophs in parallel with rates of 15N2 incorporation into particulate organic matter, we suggest that the difference between N2-fixation rates measured with the established method and those measured with the new method8 can be related to the composition of the diazotrophic community. Our data show that in areas dominated by Trichodesmium, the established method underestimatesN2-fixation rates by an averageof 62%. We also find that the newly developed method yields N2-fixation rates more than six times higher than those from the established method when unicellular, symbiotic cyanobacteria and c-proteobacteria dominate the diazotrophic community. On the basis of average areal rates measured over the Atlantic Ocean, we calculated basin-wide N2-fixation rates of 14+/-1TgNyr-1 and 24+/-1TgNyr-1 for the established and new methods, respectively. If our findings can be extrapolated to other ocean basins, this suggests that the global marine N2-fixation rate derived from direct measurements may increase from 103+/-8TgNyr-1 to 177+/-8TgNyr-1, and that the contribution of N2 fixers other than Trichodesmium is much more significant than was previously thought

    Response and resilience of Spartina alterniflora to sudden dieback

    Get PDF
    We measured an array of biophysical and spectral variables to evaluate the response and recovery of Spartina alterniflora to a sudden dieback event in spring and summer 2004 within a low marsh in coastal Virginia, USA. S. alterniflora is a foundation species, whose loss decreases ecosystem services and potentiates ecosystem state change. Long-term records of the potential environmental drivers of dieback such as precipitation and tidal inundation did not evidence any particular anomalies, although Hurricane Isabel in fall 2003 may have been related to dieback. Transects were established across the interface between the dieback area and apparently healthy areas of marsh. Plant condition was classified based on ground cover within transects as dieback, intermediate and healthy. Numerous characteristics of S. alterniflora culms within each condition class were assessed including biomass, morphology and spectral attributes associated with photosynthetic pigments. Plants demonstrated evidence of stress in 2004 and 2005 beyond areas of obvious dieback and resilience at a multi-year scale. Resilience of the plants was evident in recovery of ground cover and biomass largely within 3 y, although a small remnant of dieback persisted for 8 y. Culms surviving within the dieback and areas of intermediate impact had modified morphological traits and spectral response that reflected stress. These morphometric and spectral differences among plant cover condition classes serve as guidelines for monitoring of dieback initiation, effects and subsequent recovery. Although a number of environmental and biotic parameters were assessed relative to causation, the reason for this particular dieback remains largely unknown, however

    Carbon Dynamics on the Louisiana Continental Shelf and Cross-Shelf Feeding of Hypoxia

    No full text
    Large-scale hypoxia regularly develops during the summer on the Louisiana continental shelf. Traditionally, hypoxia has been linked to the vast winter and spring nutrient inputs from the Mississippi River and its distributary, the Atchafalaya River. However, recent studies indicate that much of the shelf ecosystem is heterotrophic. We used data from five late July shelfwide cruises from 2006 to 2010 to examine carbon and oxygen production and identify net autotrophic areas of phytoplankton growth on the Louisiana shelf. During these summer times of moderate river flows, shelfwide pH and particulate organic carbon (POC) consistently showed strong signals for net autotrophy in low salinity (<25) waters near the river mouths. There was substantial POC removal via grazing and sedimentation in near-river regions, with 66–85 % of POC lost from surface waters in the low and mid-salinity ranges without producing strong respiration signals in surface waters. This POC removal in nearshore environments indicates highly efficient algal retention by the shelf ecosystem. Updated carbon export calculations for local estuaries and a preliminary shelfwide carbon budget agree with older concepts that offshore hypoxia is linked strongly to nutrient loading from the Mississippi River, but a new emphasis on cross-shelf dynamics emerged in this research. Cross-shelf transects indicated that river-influenced nearshore waters <15 m deep are strong sources of net carbon production, with currents and wave-induced resuspension likely transporting this POC offshore to fuel hypoxia in adjacent mid-shelf bottom waters.Griffith Sciences, Griffith School of EnvironmentNo Full Tex

    Assessing coastal wetland vulnerability to sea-level rise along the northern Gulf of Mexico coast: Gaps and opportunities for developing a coordinated regional sampling network

    No full text
    corecore