10 research outputs found

    E-waste Management and the Conservation of Geochemical Scarce Resources

    No full text
    Electrical and electronic equipment (EEE) generates very complex waste due to the wide variety of components such as metals, polymers, ceramic materials, and composite elements. In addition, the growing consumption of these devices due to technological development increases the rate they are disposed of. When improperly disposed of, waste electric and electronic equipment (WEEE) may trigger environmental impacts and negative effects on health. Also, the expansion of the electronic industry is based on the extraction of natural resources, some of which are running increasingly scarce. In this scenario, recycling stands as an alternative in the effort to recover economically interesting materials such as metals, which are abundant in waste electric and electronic equipment. This text discusses the current scenario in the electrical and electronic equipment industry and generation of waste electric and electronic equipment considering the implications of resource management and environment, social, and economic impact in this production chain

    Mineral supply for sustainable development requires resource governance

    No full text
    International audienceSuccessful delivery of the United Nations sustainable development goals and implementation of the Paris Agreement requires technologies that utilize a wide range of minerals in vast quantities. Metal recycling and technological change will contribute to sustaining supply, but mining must continue and grow for the foreseeable future to ensure that such minerals remain available to industry. New links are needed between existing institutional frameworks to oversee responsible sourcing of minerals, trajectories for mineral exploration, environmental practices, and consumer awareness of the effects of consumption. Here we present, through analysis of a comprehensive set of data and demand forecasts, an interdisciplinary perspective on how best to ensure ecologically viable continuity of global mineral supply over the coming decades

    Chromate replacement: what does the future hold?

    No full text
    Abstract The ubiquitous use of chromium and its derivatives as corrosion preventative compounds accelerated rapidly after the second industrial revolution, with such compounds now integral to modern society. However, the detrimental impact of chromium compounds on the environment and human health has prompted the need to revisit the majority of current industrial corrosion protection measures. This review retraces the origins of chromium replacement motivations, introducing the various legislative actions aimed at diminishing the use of chromium compounds, and critically reviews alternative corrosion preventative technologies developed in the recent decades to now. The review, herein, is intended for a broad audience in order to provide a concise update to an increasingly timely issue
    corecore