68 research outputs found

    Inventory control for point-of-use locations in hospitals

    Get PDF
    Most inventory management systems at hospital departments are characterised by lost sales, periodic reviews with short lead times, and limited storage capacity. We develop two types of exact models that deal with all these characteristics. In a capacity model, the service level is maximised subject to a capacity restriction, and in a service model the required capacity is minimised subject to a service level restriction. We also formulate approximation models applicable for any lost-sales inventory system (cost objective, no lead time restrictions etc). For the capacity model, we develop a simple inventory rule to set the reorder levels and order quantities. Numerical results for this inventory rule show an average deviation of 1% from the optimal service levels. We also embed the single-item models in a multi-item system. Furthermore, we compare the performance of fixed order size replenishment policies and (R, s, S) policies

    Prognostic relevance of number and bilaterality of positive surgical margins after radical prostatectomy

    Get PDF
    Item does not contain fulltextPURPOSE: Positive surgical margin (PSM) status following radical prostatectomy (RP) is a well-established prognostic factor. The aim of the present study is to evaluate whether number of PSMs or bilaterality of PSMs might have prognostic significance for biochemical recurrence (BCR) in the population with a PSM status following RP. METHODS: We evaluated 1,395 RP pathology reports from our center between 1980 and 2006. All patients who underwent (neo)-adjuvant therapy were excluded, leaving a cohort of 1,009 patients, with 249 (24.7%) subjects having a PSM at RP of whom 29.4% had multiple PSMs (>/= 2 sites), while 13.6% had bilateral PSMs. Median follow-up was 40 months (range 0-258 months). We used BCR-free survival as the primary study outcome. BCR was defined as any rise in PSA above or equal to 0.2 ng/ml. RESULTS: Of patients with a PSM status, 41% (95% CI: 33-49%) developed BCR within 5 years, compared to 12% (95% CI: 9-15%) in the population without a PSM. Multivariable analysis identified PSA at diagnosis and RP Gleason score as independent predictive factors for BCR. Increasing number and/or bilaterality of PSM did not lead to significant higher rates of BCR. CONCLUSION: In patients with a PSM, the number of positive sites or bilaterality of PSM status does not add prognostic information for risk of BCR. Survival curve slopes were different for patients with bilateral PSM, showing a significant tendency to progress to BCR earlier during follow-up than patients with unilateral PSM.1 februari 201

    Osteochondral defects in the ankle: why painful?

    Get PDF
    Osteochondral defects of the ankle can either heal and remain asymptomatic or progress to deep ankle pain on weight bearing and formation of subchondral bone cysts. The development of a symptomatic OD depends on various factors, including the damage and insufficient repair of the subchondral bone plate. The ankle joint has a high congruency. During loading, compressed cartilage forces its water into the microfractured subchondral bone, leading to a localized high increased flow and pressure of fluid in the subchondral bone. This will result in local osteolysis and can explain the slow development of a subchondral cyst. The pain does not arise from the cartilage lesion, but is most probably caused by repetitive high fluid pressure during walking, which results in stimulation of the highly innervated subchondral bone underneath the cartilage defect. Understanding the natural history of osteochondral defects could lead to the development of strategies for preventing progressive joint damage

    Colorful Niches of Phytoplankton Shaped by the Spatial Connectivity in a Large River Ecosystem: A Riverscape Perspective

    Get PDF
    Large rivers represent a significant component of inland waters and are considered sentinels and integrators of terrestrial and atmospheric processes. They represent hotspots for the transport and processing of organic and inorganic material from the surrounding landscape, which ultimately impacts the bio-optical properties and food webs of the rivers. In large rivers, hydraulic connectivity operates as a major forcing variable to structure the functioning of the riverscape, and–despite increasing interest in large-river studies–riverscape structural properties, such as the underwater spectral regime, and their impact on autotrophic ecological processes remain poorly studied. Here we used the St. Lawrence River to identify the mechanisms structuring the underwater spectral environment and their consequences on pico- and nanophytoplankton communities, which are good biological tracers of environmental changes. Our results, obtained from a 450 km sampling transect, demonstrate that tributaries exert a profound impact on the receiving river’s photosynthetic potential. This occurs mainly through injection of chromophoric dissolved organic matter (CDOM) and non-algal material (tripton). CDOM and tripton in the water column selectively absorbed wavelengths in a gradient from blue to red, and the resulting underwater light climate was in turn a strong driver of the phytoplankton community structure (prokaryote/eukaryote relative and absolute abundances) at scales of many kilometers from the tributary confluence. Our results conclusively demonstrate the proximal impact of watershed properties on underwater spectral composition in a highly dynamic river environment characterized by unique structuring properties such as high directional connectivity, numerous sources and forms of carbon, and a rapidly varying hydrodynamic regime. We surmise that the underwater spectral composition represents a key integrating and structural property of large, heterogeneous river ecosystems and a promising tool to study autotrophic functional properties. It confirms the usefulness of using the riverscape approach to study large-river ecosystems and initiate comparison along latitudinal gradients

    Remote detection of invasive alien species

    Get PDF
    The spread of invasive alien species (IAS) is recognized as the most severe threat to biodiversity outside of climate change and anthropogenic habitat destruction. IAS negatively impact ecosystems, local economies, and residents. They are especially problematic because once established, they give rise to positive feedbacks, increasing the likelihood of further invasions and spread. The integration of remote sensing (RS) to the study of invasion, in addition to contributing to our understanding of invasion processes and impacts to biodiversity, has enabled managers to monitor invasions and predict the spread of IAS, thus supporting biodiversity conservation and management action. This chapter focuses on RS capabilities to detect and monitor invasive plant species across terrestrial, riparian, aquatic, and human-modified ecosystems. All of these environments have unique species assemblages and their own optimal methodology for effective detection and mapping, which we discuss in detail
    corecore