15 research outputs found

    Suffering in long-term cancer survivors: An evaluation of the PRISM-R2 in a population-based cohort

    Get PDF
    The Pictorial Representation of Illness and Self Measure-Revised 2 (PRISM-R2) has been developed as generic measure to assess suffering. The aim of this study was to evaluate the ability of this instrument to identify long-term cancer survivors with high levels of suffering who may need additional support. 1299 cancer survivors completed the PRISM-R2, the Short Form Health Survey (SF-36), and the Quality of Life-Cancer Survivors questionnaire (QoL-CS). The PRISM-R2 distinguishes between the Self-Illness Separation (SIS) and Illness Perception Measure (IPM), both measuring aspects of suffering. 112 (9%) cancer survivors reported high suffering according to IPM. This group had a higher cancer stage at diagnosis, more cancer recurrences, more comorbidities, and were lower educated compared to people reporting less suffering. The PRISM-R2 could explain substantial amounts of variance (10-14%) in the psychological aspects of the SF-36 and QoL-CS. The IPM also discriminated statistically and clinically significant between high- and low-health status. The PRISM-R2 proved to be able to discriminate between individuals with good and deteriorated levels of QoL. Further evaluation of its validity and screening potential is recommended

    Nuclear Reprogramming: Kinetics of Cell Cycle and Metabolic Progression as Determinants of Success

    Get PDF
    Establishment of totipotency after somatic cell nuclear transfer (NT) requires not only reprogramming of gene expression, but also conversion of the cell cycle from quiescence to the precisely timed sequence of embryonic cleavage. Inadequate adaptation of the somatic nucleus to the embryonic cell cycle regime may lay the foundation for NT embryo failure and their reported lower cell counts. We combined bright field and fluorescence imaging of histone H2b-GFP expressing mouse embryos, to record cell divisions up to the blastocyst stage. This allowed us to quantitatively analyze cleavage kinetics of cloned embryos and revealed an extended and inconstant duration of the second and third cell cycles compared to fertilized controls generated by intracytoplasmic sperm injection (ICSI). Compared to fertilized embryos, slow and fast cleaving NT embryos presented similar rates of errors in M phase, but were considerably less tolerant to mitotic errors and underwent cleavage arrest. Although NT embryos vary substantially in their speed of cell cycle progression, transcriptome analysis did not detect systematic differences between fast and slow NT embryos. Profiling of amino acid turnover during pre-implantation development revealed that NT embryos consume lower amounts of amino acids, in particular arginine, than fertilized embryos until morula stage. An increased arginine supplementation enhanced development to blastocyst and increased embryo cell numbers. We conclude that a cell cycle delay, which is independent of pluripotency marker reactivation, and metabolic restraints reduce cell counts of NT embryos and impede their development

    The Biological Basis for Tumour Therapy by Hyperthermia and Radiation

    No full text

    Molecular and Cellular Mechanisms of Hyperthermia

    No full text

    Micronucleus Assays

    No full text
    corecore