11 research outputs found

    Analysis of current research addressing complementary use of life-cycle assessment and risk assessment for engineered nanomaterials: have lessons been learned from previous experience with chemicals?

    No full text
    While it is generally agreed that successful strategies to address the health and environmental impacts of engineered nanomaterials (NM) should consider the well-established frameworks for conducting life cycle assessment (LCA) and risk assessment (RA), scientific research and specific guidance on how to practically apply these methods are still very much under development. This paper evaluates how research efforts have applied LCA and RA together for NM, particularly reflecting on previous experiences with applying these methods to chemicals. Through a literature review and a separate analysis of research focused on applying LCA and RA together for NM, it appears that current research efforts have taken into account some key “lessons learned” from previous experience with chemicals while many key challenges remain for practically applying these methods to NM. We identified two main approaches for using these methods together for NM: “LC-based RA” (traditional RA applied in a life cycle perspective) and “RA-complemented LCA” (conventional LCA supplemented by RA in specific life cycle steps). Hence, the latter is the only identified approach which genuinely combines LC- and RA-based methods for NM-risk research efforts to date as the former is rather a continuation of normal RA according to standard assessment procedures (e.g. REACH). Both these approaches along with recommendations for using LCA and RA together for NM are similar to those made previously for chemicals, and thus, there does not appear to be much progress made specific for NM. We have identified one issue in particular that may be specific for NM when applying LCA and RA at this time: the need to establish proper dose metrics within both methods.JRC.I.4-Nanobioscience

    Christelijk onderwijs in ontwikkeling. Jaarboek 1996

    Get PDF
    Although technological and environmental benefits are important stimuli for nanotechnology development, these technologies have been contested from an environmental point of view. The steady growth of applications of engineered nanomaterials has heated up the debate on quantifying the environmental repercussions. The two main scientific methods to address these environmental repercussions are risk assessment and life-cycle assessment. The strengths and weaknesses of each of these methods, and the relation between them, have been a topic of debate in the world of traditional chemistry for over two decades. Here we review recent developments in this debate in general and for the emerging field of nanomaterials specifically. We discuss the pros and cons of four schools of thought for combining and integrating risk assessment and life-cycle assessment and conclude with a plea for action.Conservation BiologyIndustrial Ecolog
    corecore