469 research outputs found

    Primate modularity and evolution: first anatomical network analysis of primate head and neck musculoskeletal system

    Get PDF
    Network theory is increasingly being used to study morphological modularity and integration. Anatomical network analysis (AnNA) is a framework for quantitatively characterizing the topological organization of anatomical structures and providing an operational way to compare structural integration and modularity. Here we apply AnNA for the first time to study the macroevolution of the musculoskeletal system of the head and neck in primates and their closest living relatives, paying special attention to the evolution of structures associated with facial and vocal communication. We show that well-defined left and right facial modules are plesiomorphic for primates, while anthropoids consistently have asymmetrical facial modules that include structures of both sides, a change likely related to the ability to display more complex, asymmetrical facial expressions. However, no clear trends in network organization were found regarding the evolution of structures related to speech. Remarkably, the increase in the number of head and neck muscles – and thus of musculoskeletal structures – in human evolution led to a decrease in network density and complexity in humans

    Local Control of Excitation-Contraction Coupling in Human Embryonic Stem Cell-Derived Cardiomyocytes

    Get PDF
    We investigated the mechanisms of excitation-contraction (EC) coupling in human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and fetal ventricular myocytes (hFVMs) using patch-clamp electrophysiology and confocal microscopy. We tested the hypothesis that Ca2+ influx via voltage-gated L-type Ca2+ channels activates Ca2+ release from the sarcoplasmic reticulum (SR) via a local control mechanism in hESC-CMs and hFVMs. Field-stimulated, whole-cell [Ca2+]i transients in hESC-CMs required Ca2+ entry through L-type Ca2+ channels, as evidenced by the elimination of such transients by either removal of extracellular Ca2+ or treatment with diltiazem, an L-type channel inhibitor. Ca2+ release from the SR also contributes to the [Ca2+]i transient in these cells, as evidenced by studies with drugs interfering with either SR Ca2+ release (i.e. ryanodine and caffeine) or reuptake (i.e. thapsigargin and cyclopiazonic acid). As in adult ventricular myocytes, membrane depolarization evoked large L-type Ca2+ currents (ICa) and corresponding whole-cell [Ca2+]i transients in hESC-CMs and hFVMs, and the amplitude of both ICa and the [Ca2+]i transients were finely graded by the magnitude of the depolarization. hESC-CMs exhibit a decreasing EC coupling gain with depolarization to more positive test potentials, “tail” [Ca2+]i transients upon repolarization from extremely positive test potentials, and co-localized ryanodine and sarcolemmal L-type Ca2+ channels, all findings that are consistent with the local control hypothesis. Finally, we recorded Ca2+ sparks in hESC-CMs and hFVMs. Collectively, these data support a model in which tight, local control of SR Ca2+ release by the ICa during EC coupling develops early in human cardiomyocytes

    Influence of different beverages on the force degradation of intermaxillary elastics: an in vitro study

    Get PDF
    OBJECTIVE: The aim of this study was to evaluate in vitro the effects of frequently ingested beverages on force degradation of intermaxillary elastics. MATERIAL AND METHODS: One hundred and eighty 1/4-inch intermaxillary elastics (TP Orthodontics) were immersed into six different beverages: (1) Coca-Cola(®); (2) Beer; (3) Orange juice; (4) Red wine; (5) Coffee and (6) artificial saliva (control). The period of immersion was 15 min for the first and second cycles and 30 min for the third to fifth cycles. Tensile forces were read in a tensile testing machine before and after the five immersion cycles. One-way repeated measures ANOVA was used to identify significant differences. RESULTS: Force degradation was seen in all evaluated groups and at all observation periods (p<0.05). A greater degree of degradation was present at the initial periods, decreasing gradually over time. However, no statistically significant differences were seen among groups at the same periods, showing that different groups behaved similarly. CONCLUSION: The chemical nature of the evaluated beverages was not able to influence the degree of force degradation at all observation periods
    corecore