60 research outputs found

    Probabilistic Seismic Hazard Assessment of Seismically Induced Landslide for Bakacak-Dϋzce Region

    No full text
    Earthquake induced slope instability is considered as one of the major sources of the earthquake hazards, especially in the near fault regions. Simplified tools as Newmark's Sliding Block (NSB) analogy are commonly used to represent the slope stability during ground shaking since the outcome of this analogy is quantitative, larger NSB displacement values indicate higher seismic slope instability risk. Recently, empirical NSB displacement prediction models based on single or multiple ground motion intensity measures are proposed to analyze the slope instability hazard in a probabilistic manner. Within the contents of this study, the most compatible NSB displacement model with the regional ground motion characteristics is selected and incorporated into the vector-valued probabilistic seismic hazard assessment framework. The NSB displacement hazard curves are constructed for Asarsuyu Region where a large-scaled seismically induced landslide was observed during 1999 Duzce earthquake. The NSB displacement hazard results are compared with the dynamic analysis results that were conducted immediately after the earthquake and measured slope displacements

    Application of airborne LiDAR data and airborne multispectral imagery to structural mapping of the upper section of the Troodos ophiolite, Cyprus

    Get PDF
    Structural maps are traditionally produced by mapping features such as faults, folds, fabrics, fractures and joints in the field. However, large map areas and the spatially limited ground perspective of the field geologist can potentially increase the likelihood that not all structural features will be identified within a given area. The ability to recognise and map both local and regional structural features using high-resolution remote sensing data provides an opportunity to complement field-based mapping to help generate more comprehensive structural maps. Nonetheless, vegetation cover can adversely affect the extraction of structural information from remotely sensed data as it can mask the appearance of subtle spectral and geomorphological features that correspond to geological structures. This study investigates the utility of airborne Light Detection And Ranging (LiDAR) data and airborne multispectral imagery for detailed structural mapping in vegetated ophiolitic rocks and sedimentary cover of a section of the northern Troodos ophiolite, Cyprus. Visual enhancement techniques were applied to a 4-m airborne LiDAR digital terrain model and 4-m airborne multispectral imagery to assist the generation of structural lineament maps. Despite widespread vegetation cover, dykes and faults were recognisable as lineaments in both data sets, and the predominant strike trends of lineaments in all resulting maps were found to be in agreement with fieldbased structural data. Interestingly, prior to fieldwork, most lineaments were assumed to be faults, but were ground verified as dykes instead, emphasising the importance of ground-truthing. Dyke and fault trends documented in this study define a pervasive structural fabric in the upper Troodos ophiolite that reflects the original sea-floor spreading history in the Larnaca graben. This structural fabric has not previously been observed in such detail and is likely to be continuous in adjacent regions under sedimentary cover. This information may be useful to future exploration efforts in the region focused on identification of structurally controlled mineral and groundwater resources. Overall, our case study highlights the efficacy of airborne LiDAR data and airborne multispectral imagery for extracting detailed and accurate structural information in hard-rock terrain to help complement field-based mapping
    corecore