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Abstract Structural maps are traditionally produced by mapping features such as faults, 16 

folds, fabrics, fractures and joints in the field. However, large map areas and the spatially limited 17 

ground perspective of the field geologist leads to the inevitability that some important geological 18 

features may go un-noticed. The ability to recognise and map both local and regional structural 19 

features using high-resolution remote sensing data provides an opportunity to complement field-20 

based mapping to enable the generation of more comprehensive structural maps. Nonetheless, 21 

vegetation cover can adversely affect the extraction of structural information from remotely sensed 22 

data as it can mask the appearance of subtle spectral and geomorphological features that 23 

correspond to geological structures. This study investigates the utility of airborne Light Detection 24 
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And Ranging (LiDAR) data and airborne multispectral imagery for detailed structural mapping in 25 

vegetated ophiolitic rocks and sedimentary cover of a section of the northern Troodos ophiolite, 26 

Cyprus. Visual enhancement techniques were applied to a 4 m airborne LiDAR digital terrain 27 

model and 4 m airborne multispectral imagery to assist the generation of structural lineament 28 

maps. Despite widespread vegetation cover, dykes and faults were recognisable as lineaments in 29 

both datasets and the predominant strike trends of lineaments in all resulting maps were found to 30 

be in agreement with field-based structural data. Interestingly, prior to fieldwork, most lineaments 31 

were assumed to be faults, but were ground verified as dykes instead, emphasising the importance 32 

of ground truthing. The dyke and fault trends documented in this study define a pervasive 33 

structural fabric in the upper Troodos ophiolite that reflects the original sea-floor spreading history 34 

in the Larnaca graben. This structural fabric has not previously been observed in such detail and is 35 

likely to be continuous in adjacent regions under sedimentary cover. This information may be 36 

useful to future exploration efforts in the region focused on identification of structurally controlled 37 

mineral and groundwater resources. Overall, our case study highlights the efficacy of airborne 38 

LiDAR data and airborne multispectral imagery for extracting detailed and accurate structural 39 

information in hard-rock terrain to help complement field-based mapping. 40 
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Introduction 53 

In regions that have been deformed, documenting the structural geology is 54 

a key objective of geological mapping (Barnes and Lisle 2004). Geological maps 55 

portraying structural features are important because they provide valuable 56 

information for understanding the local crustal architecture and deformation 57 

history. In addition, structural maps may inform seismic and landslide hazard 58 

assessments, and provide useful information for major engineering projects and 59 

the exploration of groundwater, petroleum and mineral resources (Moore and 60 

Waltz 1983; Kresic 1995; Karnieli et al. 1996; Wladis 1999; Harris et al. 2001; 61 

Peña and Abdelsalam 2006; Corgne et al. 2010).  62 

Traditionally, structural maps are produced by mapping features such as 63 

faults, folds, fabrics, fractures and joints in the field. Although arguably the most 64 

reliable and accurate maps are those produced using this approach, large map 65 

areas, time constraints and the limited ground perspective of the field geologist 66 

has the potential to increase the possibility that not all structural features will be 67 

identified (Süzen and Toprak 1998). However, the ability to also recognise and 68 

map structural features using remote sensing data offers the potential to provide 69 

complementary information and the opportunity to generate more comprehensive 70 

and accurate structural maps. 71 

Many important structural features (e.g., faults, fractures, veins, dykes, 72 

joints) may be expressed as lineaments in remotely sensed imagery and digital 73 

elevation models (DEMs; Masoud and Koike 2006). This is particularly the case 74 

with steep structures because their surface traces are less deflected and curved 75 

across uneven topography. A lineament is defined by O'Leary et al. (1976) as "a 76 

mappable, simple or composite linear feature of a surface, whose parts are aligned 77 
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in a rectilinear or slightly curvilinear relationship and which differs distinctly 78 

from the patterns of adjacent features and presumably reflects a subsurface 79 

phenomenon". In spectral imagery, lineaments are typically recognised as edges 80 

defined by a series of adjacent pixels at the boundary of brightness changes 81 

(Koike et al. 1998). Such spectral features may correspond to variations in surface 82 

composition or shadowing. In the context of the topographic domain, geological 83 

lineaments are typically associated with geomorphological features such as linear 84 

valleys, ridgelines, escarpments and slope breaks (Jordan and Schott 2005). Such 85 

features are also expressed as edges in DEMs, defined either by an abrupt change 86 

in elevation (i.e., slope break) or by an increase or decrease in elevation for a short 87 

lateral distance (i.e., ridgelines and valleys). 88 

Lineaments observed in remotely sensed data products that are interpreted 89 

to be geological structures are typically manually traced. However, this technique 90 

can be time-consuming and tedious at regional mapping scales, and also highly 91 

subjective and therefore irreproducible (Masoud and Koike 2006). A variety of 92 

enhancement techniques are commonly used to try to improve the efficiency and 93 

objectivity of the visual interpretation and mapping process. Principal Component 94 

Analysis, decorrelation stretching and generation of false-colour composite 95 

images are useful techniques for exaggerating subtle colour or brightness 96 

differences in spectral imagery to accentuate the appearance of potential 97 

lineaments (Qari 1991; Mountrakis et al. 1998). Shaded relief models generated 98 

from DEMs are a powerful tool for enhancing the appearance of lineaments in 99 

topographic data. This is because the artificial solar illumination azimuth and 100 

inclination angles can be varied to help identify lineaments in a range of 101 

orientations by recognising the shadowing effects (manifest as boundaries 102 

between light and dark tones) caused by abrupt changes in elevation (Jordan and 103 
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Schott 2005). Additional techniques that are commonly applied to spectral 104 

imagery and DEMs in order to enhance the visual appearance of edges include 105 

convolution filters, such as Sobel, Prewitt and Laplacian filters (Moore and Waltz 106 

1983; Süzen and Toprak 1998; Wladis 1999), and morphological operators, such 107 

as erosion, dilation, opening and closing (Tripathi et al. 2000; Ricchetti and 108 

Palombella 2005).  109 

Automated algorithms for mapping geological lineaments from remotely 110 

sensed data have also received considerable attention (Argialas and Mavrantza 111 

2004). Examples include algorithms based on Canny edge detection (Corgne et al. 112 

2010), the Hough transform (Karnieli et al. 1996; Fitton and Cox 1998), line-113 

tracing (Koike et al. 1995) and morphometric feature parameterisation (Wallace et 114 

al. 2006). Despite increasing the reproducibility, efficiency and objectivity of 115 

lineament mapping, there are concerns regarding the suitability of automated 116 

algorithms for geological lineament detection (Parsons and Yearley 1986) — the 117 

most obvious being their inability to differentiate geological lineaments from non-118 

geological lineaments (e.g., roads, field boundaries). Therefore, for reasonably 119 

sized areas, the task of lineament mapping is arguably best performed manually 120 

based on human perception. 121 

 Vegetation cover can have somewhat adverse effects on the extraction of 122 

structural information from remotely sensed data because vegetation, especially 123 

tall dense vegetation (e.g., forests), is capable of masking the appearance of subtle 124 

spectral and geomorphological lineaments that correspond to geological 125 

structures. Also, with only moderate spatial resolution (~ 15–30 m), the utility of 126 

data acquired from classic spaceborne instruments — such as Landsat TM and the 127 

Shuttle Radar Topographic Mission (SRTM) — is generally confined to the 128 

identification of only regional structural features. The use of high-resolution (ca. 129 
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1–4 m) airborne Light Detection And Ranging (LiDAR) data and airborne 130 

spectral imagery can enhance the utility of remote sensing for structural mapping 131 

because these datasets enable the extraction of detailed information about both 132 

local and regional geological structures. Furthermore, with the capability to 133 

acquire accurate and high-resolution topographic data even in forested terrain 134 

(Kraus and Pfeifer 1998), airborne LiDAR is now established as an important tool 135 

for mapping the surface traces of regionally-significant faults in either vegetated 136 

or non-vegetated terrain (e.g., Harding and Berghoff 2000; Haugerud et al. 2003; 137 

Prentice et al. 2003; Cunningham et al. 2006; Arrowsmith and Zielke 2009). 138 

Nevertheless, with the exception of a few studies which examine the use of 139 

airborne LiDAR for identifying bedrock structures (Wallace et al. 2006; Nyborg 140 

et al. 2007; Pavlis and Bruhn 2011), the broader utility of airborne LiDAR for 141 

structural applications has yet to be fully realised.  142 

The objective of this study is to investigate the utility of airborne LiDAR 143 

data and airborne multispectral imagery for detailed structural mapping of the 144 

vegetated ophiolitic rocks and sedimentary cover in a section of the upper 145 

Troodos ophiolite, Cyprus. Owing primarily to the reliability concerns associated 146 

with automated algorithms, the efficacy of airborne LiDAR data and airborne 147 

multispectral imagery for structural mapping is evaluated here by manually 148 

generating lineament maps with the aid of several visual enhancement techniques. 149 

Structural information extracted from the data is subsequently validated using 150 

field-based data. 151 

 152 
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Geological setting 153 

The Troodos ophiolite is an uplifted slice of oceanic crust and lithospheric 154 

mantle that was created through sea-floor spreading (Gass 1968; Moores and Vine 155 

1971). The ophiolite forms a dome-like structure centred on Mt. Olympus 156 

(1,952 m) that dominates the geology and topography of the island of Cyprus. 157 

Stratigraphically, the ophiolite comprises a mantle sequence of harzburgites, 158 

dunites and a serpentinite diapir, a largely gabbroic plutonic complex, a sheeted 159 

dyke complex, a lava sequence and oceanic sediments at decreasing elevations 160 

along the northern slopes of the range (Varga and Moores 1985). The study area is 161 

situated on the contact between the lava sequence and overlying sedimentary 162 

cover sequences in the northern foothills of the Troodos ophiolite (Fig. 1a). It 163 

covers approximately 16 km2 and contains four main lithological units — the 164 

Basal Group (generally comprising 80–90% dykes and 10–20% lavas), Pillow 165 

Lavas (Upper and Lower), late Cretaceous to early Miocene chalky marls of the 166 

Lefkara Formation and alluvium–colluvium. This area is located in the most 167 

eastern of three structural grabens (the Larnaca graben) proposed and interpreted 168 

by Varga and Moores (1985) as fossil axial valleys of an eastward migrating 169 

spreading centre in the northern part of the ophiolite. Faulting within this area is 170 

dominated by a NW–SE trend, which is parallel to the interpreted spreading axis 171 

of the Larnaca graben and is therefore consistent with the proposed crustal 172 

extension in this region. Moreover, the dominant dyke trend in the study area is 173 

parallel to this NW–SE faulting trend (Gass 1960). A less significant N–S 174 

structural trend observed in this region is believed to correspond to a later stage of 175 

normal faulting (Gass 1960; Boyle and Robertson 1984). 176 
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 Ubiquitous vegetation typically covering between 30–90% of the surface 177 

area is responsible for a lack of completely exposed outcrops in the study area. 178 

Vegetation cover type generally varies from moderate-to-dense lichen cover, to 179 

crops (e.g., cereals, olive groves) as well as both green and dry grasses, to what 180 

can be broadly described as garrigue or maquis, predominantly comprising 181 

scrubby short dry grasses, short-to-medium height shrubs and scattered small 182 

trees. Other types of mostly sporadic vegetation cover occurring throughout the 183 

study area include trees — ranging from isolated trees (e.g., pines and oaks) to 184 

dense thickets and copses — and areas covered by tall, dry grasses and scrubland. 185 

 186 

Remote sensing data 187 

Airborne LiDAR data and Airborne Thematic Mapper (ATM) 188 

multispectral imagery were acquired over the Troodos study area in May 2005 by 189 

the Natural Environment Research Council Airborne Research and Survey 190 

Facility. The airborne LiDAR data were acquired at an average flying altitude of 191 

2550 m using an ALTM-3033 system operating with a laser pulse repetition rate 192 

of 33 kHz and a half-scan angle of ±19.4° either side of the nadir. The resulting 193 

dataset contains point data from five overlapping flight-lines, each with a swath 194 

width of 1400–1500 m and an overlap of 20%–50% between adjacent swaths. 195 

After initial pre-processing by the Unit for Landscape Modelling at the University 196 

of Cambridge, UK, the airborne LiDAR point data were delivered as ASCII files 197 

containing the x-y-z coordinates of all first and last returns in the WGS84 198 

Universal Transverse Mercator (UTM) zone 36-North coordinate system. On 199 

delivery, the point data were classified as either ground or non-ground returns 200 

(e.g., trees, buildings) using the triangulated irregular network densification 201 
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algorithm (Axelsson 2000) implemented in the TerraScan software (Terrasolid 202 

Ltd., Finland). Points corresponding to non-ground returns were subsequently 203 

discarded, whilst those classified as ground returns were interpolated using a 204 

block kriging algorithm in order to generate a 4 m digital terrain model (DTM) or 205 

“bare-earth” DEM (Fig. 1b). A more detailed description of the airborne LiDAR 206 

data processing steps is provided by Grebby et al. (2010). 207 

The ATM imagery initially comprised 11 spectral bands located in the 208 

visible/near-infrared (VNIR; Bands 1–8), short-wave infrared (SWIR; Bands 9–209 

10) and thermal infrared (TIR; Band 11) regions of the electromagnetic spectrum. 210 

However, due to data quality concerns, and for the purpose of concentrating solely 211 

on reflectance data, ATM Bands 1 and 11 were omitted from any further analysis. 212 

Five northwest-southeast trending flight-lines of imagery were acquired over the 213 

study area and delivered as Level 1b Hierarchical Data Format (HDF) files, with 214 

radiometric calibration algorithms applied and aircraft navigation information 215 

appended. The radiometric calibration involves conversion of the raw ATM data 216 

to at-sensor radiance units, followed by scaling to 16-bit digital numbers (DNs). 217 

Conversion of the raw ATM data to at-sensor radiance is achieved by applying 218 

gains and offsets — determining using a source traceable to a national standard — 219 

to the data recorded in each of the wavebands (Hill et al. 2010). All image strips 220 

were individually geocorrected and re-sampled to a spatial resolution of 4 m using 221 

the AZGCORR software (Azimuth Systems) in conjunction with a 4 m airborne 222 

LiDAR DEM. The five geocorrected images were then corrected for limb-223 

brightening, mosaicked and co-registered to the 4 m LiDAR DTM using ENVI 224 

4.3 (ITT Visual Information Solutions, Boulder, Colorado) to generate the 4 m 225 

ATM imagery comprising Bands 2–10 (Fig. 1c). The reader is referred to Grebby 226 
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et al. (2011) for further information regarding the processing steps applied to the 227 

ATM imagery.  228 

 229 

Methods 230 

The methodology employed in this study comprises four main steps: a 231 

preliminary analysis, followed by lineament enhancement, mapping and analysis 232 

and field validation. Each of these steps is discussed in detail below.  233 

 234 

Preliminary analysis 235 

A preliminary analysis was first undertaken to determine whether the main 236 

structural features in the study area could be identified using both the 4 m airborne 237 

LiDAR DTM and 4 m ATM imagery. The main structural features found in the 238 

Troodos study area are faults and dykes (Figs. 2 and 3). The locations of typical 239 

examples of a fault and a dyke were identified and cross-sectional profiles were 240 

extracted for these from the airborne LiDAR DTM and ATM imagery for 241 

inspection in order to determine the utility of the datasets for mapping the 242 

ophiolite structure. 243 

The example fault (labelled “A” in Fig. 1b, c) is of a major fault located 244 

along a stream transect, which forms a cleft that cuts both sides of a canyon that 245 

contains the stream (Fig. 4a). Cross-sectional profiles extracted from the airborne 246 

LiDAR DTM and ATM imagery in the locality of this fault are shown in Figs. 4b 247 

and 4c, respectively. The fault can be clearly recognised in the LiDAR DTM 248 

profile as a decrease in elevation of approximately 0.5 m over a relatively short 249 

width of 7 m; forming a linear trough. This fault is also visible in the ATM 250 
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imagery, albeit as a subtle decrease in brightness (or radiance) with edges defined 251 

by relatively abrupt changes in the brightness gradient at both boundaries. 252 

 The example dyke (labelled “B” in Fig. 1b, c) is located upstream 253 

(southwest) of the example fault. The dyke (or possibly a set of dykes) can be 254 

seen cutting across the stream to form an upstanding linear ridge feature in Pillow 255 

Lavas on the western bank of the stream (Fig. 4d). Cross-sectional profiles 256 

extracted from the airborne LiDAR DTM and ATM imagery in the locality of the 257 

dyke are shown in Figs. 4e and 4f, respectively. The dyke is clearly recognised as 258 

a 3 m wide ridgeline in the LiDAR DTM profile, bounded by abrupt decreases in 259 

elevation at both edges. Although the dyke can be identified in the ATM image 260 

profile as well, its expression is less conspicuous because of the narrower (~1 m) 261 

width of the feature. Nevertheless, the dyke is defined by boundaries caused by 262 

abrupt changes in the radiance gradient. Illumination conditions during image 263 

acquisition or smoothing effects during processing of the imagery could be 264 

responsible for the relatively narrow appearance of this particular dyke in the 265 

ATM imagery.   266 

 267 

Lineament enhancement 268 

It is apparent from the results of the preliminary analysis that both airborne 269 

remote sensing datasets are capable of revealing faults and dykes in the uppermost 270 

section of the Troodos ophiolite as lineaments. Accordingly, several visual 271 

enhancement techniques were applied to the airborne LiDAR DTM and ATM 272 

imagery to help generate structural lineament maps for the study area. However, 273 

prior to this, Principal Component Analysis (PCA) was first applied to the ATM 274 

imagery in order to reduce the number of spectral bands whilst still retaining most 275 
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of the spectral information contained within the entire dataset. In addition to 276 

reducing data dimensionality, the PCA technique is also useful because it 277 

enhances spectral information by decorrelating the spectral data in all bands and 278 

can be used to segregate noise (Jensen 2005). An examination of the eigenvalues 279 

associated with the resulting nine ATM Principal Component (PC) bands revealed 280 

that the first three PC bands accounted for 97.5% of the total data variance (Table 281 

1). Consequently, the first three PC bands were selected to represent the ATM 282 

imagery in further analysis, whereas the six remaining PC bands were discarded. 283 

 284 

Shaded relief models 285 

 Shaded relief models — such as that shown in Fig. 1b — are topographic 286 

images that simulate the reflection of artificial light that is incident upon the 287 

surface from a user-specified inclination and azimuth. They are generated from 288 

DEMs by assigning shades of grey to pixels to represent their reflectance, which 289 

is usually calculated from the angle at which light is incident upon the terrain 290 

using a Lambertian reflection model (Masoud and Koike 2006). The ability to 291 

alter the shading effects by varying the illumination inclination and azimuth 292 

angles makes shaded relief models a powerful tool for identifying lineaments in a 293 

range of orientations. Here, a series of eight shaded relief models were generated 294 

from the airborne LiDAR DTM for azimuth illumination intervals of 45° (e.g., N, 295 

NE, E, etc.) and then visually interpreted to produce a lineament map. At each 296 

azimuth interval, the illumination inclination angle and the vertical exaggeration 297 

of the topographic surface were also systematically varied to try to help reveal as 298 

many lineaments as possible.  299 

 300 
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False-colour composite 301 

 In order to help identify lineaments using the ATM imagery, a false-colour 302 

composite (FCC) image was generated using ENVI 4.3 by assigning the ATM PC 303 

Bands 1, 2 and 3 to the red, green and blue channels of the computer monitor, 304 

respectively. As a result, subtle variations in the spectral properties of surface 305 

materials are typically enhanced in the FCC image through an increase in the 306 

colour contrast. Lineaments are then more readily identifiable in the FCC image 307 

as linear edges defined by sharp colour differences. A lineament map was 308 

therefore produced by visually interpreting the ATM PC FCC. 309 

 310 

Laplacian filtering 311 

Laplacian filters are a type of convolution filter commonly applied to 312 

remote sensing data for lineament mapping applications (Saha et al. 2002; Ali and 313 

Pirasteh 2004; Ricchetti and Palombella 2005). These filters are second derivative 314 

edge enhancement filters that operate without regard to edge orientation, i.e., they 315 

are non-directional. A Laplacian filter was applied to the airborne LiDAR DTM 316 

and each of the three ATM PC bands using a 3 × 3 pixel kernel with a weighting 317 

structure such as that shown in Fig. 5. In each case, the filtered image was added 318 

back to the original image at a ratio of 9:1 in order to improve the overall image 319 

interpretability. Two separate lineament maps were then produced by visually 320 

interpreting the filtered LiDAR DTM in addition to a FCC generated from the 321 

three filtered ATM PC bands. 322 

 323 
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Morphological transformation 324 

 Mathematical morphological operations such as dilation, erosion, opening 325 

and closing have also been applied to enhance lineaments in remotely sensed data. 326 

One of the most popular morphological techniques for edge detection is the Top 327 

Hat transformation (Tripathi et al. 2000; Ricchetti and Palombella 2005). The Top 328 

Hat transformation involves closing or opening operations followed by 329 

subtraction with the original image: 330 

( ) fff B −=Hat Top  (1) 331 

( ) Bfff −=Hat Top   (2) 332 

where f is the original image, f B  is the image obtained following the closing 333 

operation and f B  is the image obtained after the opening operation. The Top Hat 334 

transformation which involves the closing operation (that described by Eq. 1) is 335 

considered to yield better results for the extraction of structural features such as 336 

faults and fractures (Tripathi et al. 2000). Therefore, the closing-based Top Hat 337 

transformation was applied to the airborne LiDAR DTM and each of the ATM PC 338 

bands using a 3 × 3 pixel kernel with a weighting of 1 assigned to all elements — 339 

a weighting structure such as this avoids introducing directional bias. Again, two 340 

separate lineament maps were produced by visually interpreting the Top Hat-341 

transformed LiDAR DTM as well as a FCC generated from the three Top Hat-342 

transformed ATM PC bands. 343 

 344 

Lineament mapping 345 

A standard approach was adopted in an attempt to maximise both the 346 

consistency and objectivity of the visual mapping of lineaments. This involved 347 
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producing all lineament maps using the ENVI 4.3 software via the following 348 

protocol. All enhanced image products were individually displayed in two image 349 

windows; one providing a regional perspective (1× zoom) and a second window 350 

providing more detailed view (2–4× zoom). Next, each image product was 351 

divided into four smaller, equally-sized sections so that each section could be 352 

individually examined to help ensure that the entire study area was subjected to a 353 

near-uniform visual examination (Parsons and Yearley 1986). Each of these 354 

sections was systematically examined for lineaments. Potential lineaments were 355 

inspected in order to establish their origin, and those interpreted to be of a 356 

geological nature were traced on-screen as line vectors using the overlay tool in 357 

the ENVI 4.3 software. The criteria used to determine the length and origin of all 358 

lineaments within a single image product and between products was kept constant. 359 

Such consistency helps to further reduce the subjectivity of the manual lineament 360 

mapping process. Following interpretation, line vectors associated with each 361 

image enhancement technique were exported as Shapefiles for subsequent 362 

interrogation.   363 

 364 

Lineament analysis and validation 365 

 Lineament maps generated using the above procedure were analysed to 366 

evaluate the utility of the airborne LiDAR data and ATM imagery for structural 367 

mapping. To do this, the lineament orientations and lengths were extracted from 368 

each map by interrogating the Shapefiles in ArcMap (ArcGIS 9.2; ESRI, 369 

Redlands, California). Dominant structural trends expressed in the enhanced data 370 

products were revealed by plotting the orientation information on rose diagrams 371 

using the Stereonet/StereoWin software 372 
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(http://www.geo.cornell.edu/geology/faculty/RWA/programs/). A variety of 373 

statistics relating to the numbers and lengths of lineaments were also computed. 374 

The spatial distribution of lineaments in the maps were analysed by way of 375 

lineament density maps derived using the Spatial Analyst Line Density tool in the 376 

ArcMap Toolbox for a search radius of 250 m. 377 

 A field survey was undertaken to collect structural measurements for the 378 

purpose of validating the results of the airborne LiDAR- and ATM-based 379 

lineament mapping. The field survey was conducted by measuring the strike and 380 

dip of faults and dykes encountered along the transect highlighted in Fig. 1b, c. 381 

This transect — which predominantly comprises a stream transect — provides 382 

excellent exposure and runs perpendicular to the apparent NW–SE structural trend 383 

in the study area. Structural information obtained along this transect and in the 384 

adjacent hills should therefore reflect the primary regional structural trends, thus 385 

removing the requirement of an extensive study area-wide field survey for 386 

validation. During the field survey, only faults extending beyond the local 387 

drainage were measured since very minor faults were not anticipated to be 388 

detectable in the remotely sensed data products. Field-based structural 389 

measurements were plotted on stereonets and rose diagrams (again using 390 

Stereonet/StereoWin software) to enable comparison with remote sensing-based 391 

lineament data. 392 

 393 
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Results and discussion 394 

Field-based structural data 395 

 Field-based strike and dip measurements of faults and dykes exposed 396 

along the 4 km transect enable the most prominent structural trends within the 397 

study area to be determined. In the field, individual dykes and less abundant 398 

multiple dyke sets were predominantly observed striking NW–SE and dipping 399 

steeply towards the NE (Fig. 6a). This is consistent with other observations 400 

concerning the attitude of dykes which were made during mapping of the same 401 

region (Gass 1960). The average strike orientation for the 64 dykes is computed as 402 

318° with relatively little deviation. Nevertheless, minor secondary N–S and E–W 403 

trends are apparent. The dip angle was found to vary between 42° and 90°, with 404 

an average dip of approximately 70° NE. Conversely, brittle faults do not appear 405 

to exhibit a clear dominant trend (Fig. 6b), although the majority of those 406 

observed strike between E–W and NW–SE. Dip angles for the field-mapped faults 407 

coincide with those of dykes; varying between 40–90° with an average of ~70°. 408 

The dip direction associated with the faults is also variable, with the majority 409 

dipping NE. When combined, the field-based structural data for dykes and faults 410 

reveals a dominant NW–SE trend within the study area (Fig. 6c). This dominant 411 

trend — comprising an average strike of 320° — is primarily dictated by the 412 

abundance of NW–SE striking dykes. Minor trends striking E–W and 413 

approximately N–S are also apparent in the combined field-based structural data. 414 

During fieldwork it became apparent that many of the lineaments previously 415 

identified in the remotely sensed data are dykes and not faults. This was a 416 

surprising result — we incorrectly expected that dykes would be somewhat less 417 



18 

abundant in the uppermost Troodos ophiolitic crust (Basal Group and Pillow Lava 418 

sequences) and that major linear structures would be extensional faults. The dykes 419 

typically have margin-parallel fractures and are generally upstanding, although in 420 

some cases they were observed as eroded-out troughs depending on the rock types 421 

they intrude. 422 

A major E–W ridge is visible in the remotely sensed data at the western 423 

end of the transect and was therefore ground-checked (location C in Fig. 1b, c). 424 

This ridge consists of a 285° trending dyke swarm with silicified and sheared 425 

dyke margins and parallel fault surfaces (Fig. 3b). Sub-horizontal slickenlines on 426 

polished and sheared surfaces indicate a strike-slip history and adjacent brecciated 427 

Pillow Lavas indicate intense brittle deformation. This is the most obvious fault 428 

zone in the study area. It was assumed to be a dyke prior to field verification 429 

because of its positive relief. However, unlike other faults within the study area, 430 

this zone is silicified and parallel to a major dyke set and thus erosionally resistant 431 

and ridge-forming. Since dykes are not necessarily ridge-forming lineaments and 432 

faults are not necessarily erosionally lowered linear troughs, we again emphasise 433 

that the follow-on fieldwork was essential for identifying the structural identity of 434 

lineaments identified in the remote sensing analysis.  435 

 436 

Airborne LiDAR- and ATM-based lineament mapping 437 

 The six lineament maps and associated rose diagrams produced through 438 

the visual interpretation of the enhanced airborne LiDAR DTM and ATM 439 

products are shown in Fig. 7. An initial inspection reveals that the dominant NW–440 

SE structural trend observable in the field is also apparent in all six lineament 441 

maps. Moreover, the overall spatial coverage of the lineaments is similar for all 442 
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six maps. The vast majority of lineaments, which most likely correspond to dykes, 443 

are confined to the SE sector of the study area with a noticeable lack of lineaments 444 

in the NW and the extreme NE corner. The abundance of lineaments in the SE 445 

sector is unsurprising because this area is dominated by the Pillow Lava and Basal 446 

Group units in which dykes occur. Widespread alluvial–colluvial cover in the NW 447 

and Lefkara Formation outcrops in the NE corner explain the lack of lineaments 448 

in those areas because these younger cover sediments postdate the magmatic and 449 

tectonic events responsible for dyke emplacement and normal faulting.  450 

Rose diagrams for all six lineament maps reveal a dominant NW–SE trend 451 

for the study area (Fig. 7). This result is corroborated by the field-based structural 452 

measurements shown in the Fig. 6c. Several minor secondary trends are also 453 

evident in a number of lineament maps; particularly those generated using the Top 454 

Hat-transformed LiDAR DTM (Fig. 7c) and Top Hat-transformed ATM PC FCC 455 

(Fig. 7d). Of these, the N–S and E–W trends are substantiated by the field 456 

measurements. Average lineament orientations are fairly consistent between 457 

maps, ranging from approximately 313° for the LiDAR shaded relief model (Fig. 458 

7a) to 318° for the Top Hat-transformed LiDAR DTM (Fig. 7c). These average 459 

orientations are also comparable to that obtained from the field-based data. 460 

Accordingly, it is evident that both the airborne LiDAR and ATM data products 461 

are useful tools for revealing the dominant dyke and faulting trends of the 462 

Troodos ophiolite. 463 

Despite only minor differences in the orientation information for the 464 

various enhancement techniques, further interrogation of the lineament maps 465 

reveals some notable differences relating to the abundance and lengths of 466 

lineaments (Table 2). A maximum number of 316 lineaments were identified 467 

using the Laplacian-filtered LiDAR DTM, compared to an average of 213 for the 468 
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five other enhanced products. With regards to the two data types, the ATM-based 469 

enhancement techniques resulted in the identification of 15% more lineaments on 470 

average than LiDAR DTM-based techniques, with the exception of the Laplacian-471 

filtered LiDAR DTM. This suggests that lineaments are generally more noticeable 472 

in ATM-derived colour composite images than in the greyscale LiDAR DTM 473 

products. Nevertheless, the high abundance of lineaments recognised using the 474 

Laplacian-filtered DTM could be an indication that this is the most superior 475 

technique for enhancing the appearance of lineaments in the airborne LiDAR 476 

DTM.  477 

Frequency distributions of lineament lengths associated with each 478 

enhancement technique are shown in Fig. 8. All distributions appear unimodal and 479 

are positively skewed due to a profusion of lineaments with lengths ranging 480 

between 50–400 m. The Laplacian-filtered LiDAR DTM is associated with the 481 

greatest abundance of short lineaments, and is responsible for both the shortest 482 

mapped lineament (38.2 m) and the shortest average lineament length (158.4 m). 483 

This, together with the high number of lineaments associated with this 484 

enhancement technique, initially suggests that longer lineaments appear 485 

segmented in the Laplacian-filtered LiDAR DTM, therefore resulting in shorter 486 

but more numerous lineaments. However, evidence of lineament segmentation is 487 

not apparent in the Laplacian-filtered LiDAR DTM and the total lineament length 488 

is at least 10% longer than for any other technique, indicating that the additional 489 

lineaments do not simply arise through the division of lineaments that appear 490 

longer in the other enhanced data products. 491 

The lineament density maps shown in Fig. 9 reveal the spatial distribution 492 

of the lineaments mapped using each of the enhancement techniques. As might be 493 

expected due partly to the similarities in the spatial coverage of lineaments in all 494 
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six maps, the ensuing lineament density maps are also visibly similar. The highest 495 

densities are commonly observed in the east of the study area, within the Pillow 496 

Lavas (see Fig. 1a). In several maps, smaller regions of high lineament density are 497 

also observed towards the NE and slightly due south of the centre, again 498 

coinciding with the outcropping of Pillow Lavas. Considering that the field-based 499 

data indicates that the vast majority of lineaments in the study area are dykes 500 

together with the geological definitions of the Basal Group and Pillow Lava units 501 

(e.g., Bear 1960), one would expect the highest lineament densities to be 502 

associated with the Basal Group. A likely explanation for why this is not the case 503 

could relate to the ability to distinguish lineaments, particularly dykes, from their 504 

host different rocks. For example, with regards to the topographic domain, the 505 

relative lack of lineaments (in the form of dykes) in the dyke-dominated Basal 506 

Group could be due to uniform weathering and erosion of outcrops, which then 507 

leads to difficulty in discerning individual or sets of dykes at the surface. On the 508 

other hand, the contrast in hardness between dykes and host Pillow Lava rocks 509 

appears to result in differential erosion and weathering, thus giving dykes an 510 

obvious topographic surface expression. Spectrally, it is also difficult to identify 511 

individual dykes in host Basal Group rocks because they effectively comprise the 512 

same mineralogical composition. Dykes in the Pillow Lavas, however, are more 513 

readily recognisable because of the higher spectral contrast linked to their more 514 

disparate mineralogical compositions, grain sizes and jointing characteristics. 515 

Likewise, lineaments that correspond to faults are usually easier to trace in the 516 

Pillow Lavas than in the Basal Group rocks (Gass 1960). 517 

Lineament density maps can also be used to help determine whether 518 

lineament maps with greater abundances of lineaments actually contain more 519 

information than those with less. If two lineament density maps with considerably 520 
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different lineament abundances exhibit a strong correlation, then they can 521 

essentially be regarded as equivalent, whereas weak correlation suggests that the 522 

two maps do indeed contain different information (Parsons and Yearly 1986). The 523 

results of the correlation analysis show strong correlations between all lineament 524 

density maps (Table 3). Lineament density maps for the Laplacian-filtered ATM 525 

PC FCC and Top Hat-transformed LiDAR DTM enhancement techniques are the 526 

most weakly correlated, whereas the Laplacian-filtered ATM PC FCC map and 527 

the Top Hat-transformed ATM map are the most correlated. Correlation 528 

coefficients between the map with the greatest abundance of lineaments (the 529 

Laplacian-filtered DTM) and all other maps do not fall below 0.81. This result 530 

suggests that all lineament maps essentially contain the same information 531 

regardless of the variation in lineament abundance. Also, the results appear to 532 

suggest that the additional lineaments identified in the Laplacian-filtered LiDAR 533 

DTM are not related to the segmentation of longer lineaments, since higher 534 

lineament densities in the affected areas would likely result in somewhat lower 535 

correlations than those observed here. 536 

 537 

Significance of structural trends and implications  538 

Field-based structural measurements collected along the 4 km transect 539 

through the study area show that dykes primarily dip to the NE. This finding is in 540 

agreement with the placement of the study area on the western flank of the 541 

Larnaca graben proposed by Varga and Moores (1985). The prevailing NW–SE 542 

trend revealed by field-based structural measurements is consistent with that 543 

expected for an extensional setting. Although dykes appear to dictate this trend, an 544 

additional contribution also originates from normal faulting during graben 545 
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development and dyke injection (Gass 1960). Whilst there is a slight indication of 546 

dyke-parallel faulting in the field-based data, the rather variable orientations of the 547 

faults recorded along the transect most likely reflect local deformation and 548 

possibly younger faulting subsequent to initial formation of the ophiolitic crust. 549 

The secondary N-S trend apparent in the field-based data is consistent with a later 550 

stage of faulting previously reported in the vicinity of the study area (Gass 1960; 551 

Boyle and Robertson 1984).  552 

The main NW–SE and N-S structural trends observed in the study area are 553 

also reciprocated in lineament maps generated using the enhanced airborne 554 

LiDAR and ATM products. Moreover, these lineament maps are able to resolve 555 

structural information in much greater spatial detail than the existing geological 556 

maps of the study area. These findings are important because they demonstrate 557 

that high-resolution remotely sensed datasets can be used to complement field-558 

based structural mapping. Specifically, when used in conjunction with field-based 559 

mapping, airborne datasets clearly offer the potential to help make detailed and 560 

comprehensive structural mapping a more time- and cost-efficient process. 561 

 Obtained using a combined remote sensing–fieldwork structural mapping 562 

approach, our results reveal that there is a fundamental NW-trending steep 563 

structural grain wherever the ophiolitic rocks crop out. Based on this, it is also 564 

likely that this structural grain exists in surrounding areas under the Lefkara 565 

Formation and alluvial–colluvial cover. This fundamental structural grain was 566 

found to be dominated by parallel individual dykes and dyke swarms and less 567 

abundant normal faults. Otherwise, the hummocky Pillow Lava terrain is 568 

characterised by diverse erupted sequences that are complexly stacked and 569 

overlapping without other major cross-cutting tectonic structures (Fig. 3a). The 570 

NW–SE structural fabric identified in the Pillow Lava and Basal Group rocks and 571 
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interpreted to occur under sedimentary cover elsewhere in the study area, may be 572 

an important consideration for future resource exploration efforts. This is because 573 

deep and steep faults and fractured dyke margins may host groundwater, and 574 

because major normal faults may have originally been hydrothermal fluid 575 

pathways and therefore potential sites of massive sulphide (copper) mineralisation 576 

(Fig. 3c, d). Another major implication of this study is that the methods presented 577 

can be readily utilised to map dyke and fault trends in greater detail across the 578 

ophiolite. Ultimately, this may help to better elucidate the spreading structure of 579 

the Troodos ophiolite. 580 

 581 

Conclusions 582 

This study investigates the efficacy of high-resolution airborne LiDAR 583 

topographic data and ATM imagery for assisting detailed structural mapping of 584 

the vegetated ophiolitic rocks and sedimentary cover in an upper section of the 585 

Troodos ophiolite. To the best of our knowledge, this is the first attempt to apply 586 

airborne LiDAR to detailed structural mapping of ophiolitic rocks. Despite 587 

widespread vegetation cover, a preliminary analysis showed that the main 588 

structural features — dykes and faults — were recognisable in both the 4 m 589 

airborne LiDAR-derived DTM and 4 m ATM imagery as lineaments defined by 590 

edges. Accordingly, several different edge enhancement techniques were applied 591 

to the datasets in an attempt to augment the visual identification and mapping of 592 

lineaments. The resulting lineament maps present structural information in much 593 

greater spatial detail than the existing geological maps of the study area. 594 

Moreover, the predominant strike trends of lineaments in all maps were found to 595 

be consistent with field-based structural data acquired along a transect, in addition 596 
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to other observations made by ourselves and other workers in the vicinity. The 597 

dominant trend in the study area is orientated NW–SE and corresponds at first-598 

order to the direction of dykes injections and extensional faulting associated with 599 

the spreading axis of the proposed palaeo-Larnaca graben system. Overall, the 600 

results of this study demonstrate the significant potential to produce detailed and 601 

comprehensive structural maps efficiently, by using airborne LiDAR data or 602 

airborne spectral imagery in conjunction with field-based mapping. 603 

Whilst the results of this study have direct relevance to structural mapping 604 

of the Troodos ophiolite and other ophiolites, it is anticipated that high-resolution 605 

airborne LiDAR data and airborne spectral imagery can be readily used to 606 

augment detailed structural mapping in other settings with a similar 607 

Mediterranean climate and vegetation cover. In fact, with the capability of 608 

acquiring high-resolution topographic data in densely forested terrain, airborne 609 

LiDAR clearly has the potential to be a valuable tool for many aspects of 610 

structural mapping in any geological setting, irrespective of vegetation cover. 611 

However, the efficacy of airborne LiDAR will be dependent on the generation of 612 

an adequate DTM. In densely forested terrain this may require a high LiDAR 613 

point density to help maximise the number of ground returns. Conversely, 614 

airborne spectral imagery is likely to be of limited use in areas where structural 615 

features are subtly expressed in the terrain beneath tall dense vegetation cover. 616 

 Although accurate and detailed structural mapping using a manual 617 

approach was not time-consuming in this case, automated lineament extraction 618 

algorithms would be more efficient for larger map areas. In this respect, further 619 

research is required to help improve differentiation between lineaments of a 620 

geological origin and lineaments of non-geological significance. An integrated 621 

spectral–topographic approach which combines diagnostic morphometric and 622 
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spectral characteristics could offer additional discriminatory power to help reduce 623 

this confusion. 624 

 625 
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Figure captions 809 

Fig. 1. a Location and geology (at 1:31,680- and 1:250,000-scale) of the Troodos ophiolite and the 810 

study area. b Shaded relief model of the study area generated from the 4 m airborne LiDAR DTM. 811 

c A red-green-blue true-colour composite image of the study area generating using bands 5, 3, and 812 

2 of the 4 m ATM imagery. Labels A, B and C in b and c indicate the locations of the example 813 

fault, dyke and fault ridge shown in Fig. 4a, d and Fig. 3b, respectively. Red shading in b and c 814 

depicts transect along which field-based structural data were acquired. Digital geology provided by 815 

the Cyprus Geological Survey Department.   816 

 817 

Fig. 2. Field photographs showing typical examples of structural features observed in the study 818 
area. a Set of  NW-SE striking dykes intruding Pillow Lavas; b and c brittle fault zones in Pillow 819 
Lavas; d NW-SE trending dykes expressed in the landscape; e and f upstanding dykes intruding 820 
Pillow Lavas. 821 
 822 

Fig. 3. Important geological features of the study area. a Typical hummocky Pillow Lava 823 
landscape comprising stacks of erupted lavas devoid of steep structures; b upstanding silicified 824 
strike-slip fault zone which was assumed to be a dyke prior to field verification (location C in Fig. 825 
1b); c parallel dyke swarm with abundant dyke margin-parallel fractures; d gossan alteration 826 
within Pillow Lavas and along dyke margins and joints. 827 
 828 

Fig. 4. Expression of the main types of structural features in the remotely sensed data. a Field 829 
photograph of the example fault at location A in Fig. 1b, c, and cross-sectional profiles showing 830 
the expression of this fault cleft as a trough in b the airborne LiDAR DTM and c ATM Band 2 831 
image. d Field photograph of the example dyke(s) at location B in Fig. 1b, c, and cross-sectional 832 
profiles showing the expression of the dyke(s) as a ridge in e the airborne LiDAR DTM and f 833 
ATM Band 5 image.   834 
 835 

Fig. 5. Weighting structure of the 3×3 pixel kernel used in Laplacian filtering. 836 
 837 

Fig. 6. Structural data obtained through field-based mapping along the transect indicated in Fig. 838 
1b, c. a Equal-area stereonet plot revealing a dominant NW-SE trend and steep NE dip for 64 839 
dykes observed in the field. b Equal-area stereonet plot showing the variable strike and dip for 16 840 
faults mapped in the field. c Equal-area stereonet contour plot of poles to planes for the combined 841 
dyke and fault data (shown in a and b, respectively) reveals a dominant NW-SE structural trend 842 
within the study area. 843 
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 844 

Fig. 7. Lineament maps and rose diagrams (inset) generated through visual interpretation of a 845 
LiDAR shaded relief model (15%), b ATM PC FCC (17%), c Top Hat-transformed LiDAR DTM 846 
(12%), d Top Hat-transformed ATM PC FCC (12%), e Laplacian-filtered LiDAR DTM (16%) and 847 
f Laplacian-filtered ATM PC FCC (16%). Bracketed percentages denote proportion of lineaments 848 
represented by outer circle in corresponding rose diagrams (see Table 2 for total number of 849 
lineaments in each map). Average orientations are indicated on rose diagrams.  850 
 851 

Fig. 8. Frequency distributions of lineament lengths mapped using the various enhanced data 852 
products. a LiDAR shaded relief model; b ATM PC FCC; c Top Hat-transformed LiDAR DTM; d 853 
Top Hat-transformed ATM PC FCC; e Laplacian-filtered LiDAR DTM; f Laplacian-filtered ATM 854 
PC FCC.  855 
 856 

Fig. 9. Lineament density maps derived from lineament maps generated through visual 857 
interpretation of a LiDAR shaded relief model, b ATM PC FCC, c Top Hat-transformed LiDAR 858 
DTM, d Top Hat-transformed ATM PC FCC, e Laplacian-filtered LiDAR DTM and f Laplacian-859 
filtered ATM PC FCC. Shading represents low (white) to high (black) lineament density. 860 
 861 
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Table 1. Eigenvalues and eigenvector loadings for the first three PC bands derived from the 880 
application of PCA to ATM Bands 2–10. 881 

Eigenvectors PC1 PC2 PC3 

ATM 2 0.33 -0.40 -0.19 

ATM 3 0.35 -0.32 -0.20 

ATM 4 0.35 -0.26 -0.16 

ATM 5 0.36 -0.17 -0.14 

ATM 6 0.36 0.19 -0.19 

ATM 7 0.33 0.47 -0.19 

ATM 8 0.30 0.57 -0.05 

ATM 9 0.32 0.17 0.50 

ATM 10 0.29 -0.19 0.74 
    

Eigenvalues 7.25 1.00 0.53 

Variance (%) 80.56 11.10 5.84 

Cumulative variance (%) 80.56 91.66 97.50 

 882 

 883 

 884 

Table 2. Statistics relating to the abundance and lengths of lineaments identified using the various 885 
enhancement techniques. 886 

Enhancement 
technique 

Number of 
lineaments 

Min. 
length 

(m) 

Max. 
length (m) 

Average 
length (m) 

Total 
length (m) 

LiDAR shaded relief 
model 

192 51.1 801.0 207.4 39,817.5 

ATM PC FCC 227 38.2 714.7 167.5 38,021.0 

Top Hat-transformed 
LiDAR DTM 

199 55.2 709.2 199.5 39,707.1 

Top Hat-transformed 
ATM PC FCC 

210 52.5 665.4 217.0 45,563.1 

Laplacian-filtered 
LiDAR DTM 

316 37.7 735.1 158.4 50,059.3 

Laplacian-filtered 
ATM PC FCC 

239 53.5 868.3 174.9 41,791.4 

 887 

 888 

 889 

 890 
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 891 

Table 3. Correlation matrix for the lineament density maps. 892 
 LiDAR 

shaded 
relief 
model 

ATM 
PC 
FCC 

Top Hat-
transformed 
LiDAR 
DTM 

Top Hat-
transformed 
ATM PC 
FCC 

Laplacian-
filtered 
LiDAR 
DTM 

Laplacian-
filtered 
ATM PC 
FCC 

LiDAR shaded 
relief model –      

ATM PC FCC 0.82 –     

Top Hat-
transformed 
LiDAR DTM 

0.89 0.79 –    

Top Hat-
transformed 
ATM PC FCC 

0.87 0.87 0.83 –   

Laplacian-
filtered 
LiDAR DTM 

0.88 0.81 0.84 0.85 –  

Laplacian-
filtered ATM 
PC FCC 

0.81 0.87 0.76 0.90 0.81 – 
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