76 research outputs found
Accreting Black Holes
This chapter provides a general overview of the theory and observations of
black holes in the Universe and on their interpretation. We briefly review the
black hole classes, accretion disk models, spectral state classification, the
AGN classification, and the leading techniques for measuring black hole spins.
We also introduce quasi-periodic oscillations, the shadow of black holes, and
the observations and the theoretical models of jets.Comment: 41 pages, 18 figures. To appear in "Tutorial Guide to X-ray and
Gamma-ray Astronomy: Data Reduction and Analysis" (Ed. C. Bambi, Springer
Singapore, 2020). v3: fixed some typos and updated some parts. arXiv admin
note: substantial text overlap with arXiv:1711.1025
XSTREAM: A practical algorithm for identification and architecture modeling of tandem repeats in protein sequences
<p>Abstract</p> <p>Background</p> <p>Biological sequence repeats arranged in tandem patterns are widespread in DNA and proteins. While many software tools have been designed to detect DNA tandem repeats (TRs), useful algorithms for identifying protein TRs with varied levels of degeneracy are still needed.</p> <p>Results</p> <p>To address limitations of current repeat identification methods, and to provide an efficient and flexible algorithm for the detection and analysis of TRs in protein sequences, we designed and implemented a new computational method called XSTREAM. Running time tests confirm the practicality of XSTREAM for analyses of multi-genome datasets. Each of the key capabilities of XSTREAM (e.g., merging, nesting, long-period detection, and TR architecture modeling) are demonstrated using anecdotal examples, and the utility of XSTREAM for identifying TR proteins was validated using data from a recently published paper.</p> <p>Conclusion</p> <p>We show that XSTREAM is a practical and valuable tool for TR detection in protein and nucleotide sequences at the multi-genome scale, and an effective tool for modeling TR domains with diverse architectures and varied levels of degeneracy. Because of these useful features, XSTREAM has significant potential for the discovery of naturally-evolved modular proteins with applications for engineering novel biostructural and biomimetic materials, and identifying new vaccine and diagnostic targets.</p
The stellar halo of the Galaxy
Stellar halos may hold some of the best preserved fossils of the formation
history of galaxies. They are a natural product of the merging processes that
probably take place during the assembly of a galaxy, and hence may well be the
most ubiquitous component of galaxies, independently of their Hubble type. This
review focuses on our current understanding of the spatial structure, the
kinematics and chemistry of halo stars in the Milky Way. In recent years, we
have experienced a change in paradigm thanks to the discovery of large amounts
of substructure, especially in the outer halo. I discuss the implications of
the currently available observational constraints and fold them into several
possible formation scenarios. Unraveling the formation of the Galactic halo
will be possible in the near future through a combination of large wide field
photometric and spectroscopic surveys, and especially in the era of Gaia.Comment: 46 pages, 16 figures. References updated and some minor changes.
Full-resolution version available at
http://www.astro.rug.nl/~ahelmi/stellar-halo-review.pd
Treating attention-deficit/hyperactivity disorder beyond symptom control alone in children and adolescents: a review of the potential benefits of long-acting stimulants
Attention-deficit/hyperactivity disorder (ADHD), one of the most common neuropsychiatric conditions of childhood, often has a chronic course and persists into adulthood in many individuals. ADHD may have a clinically important impact on health-related quality of life in children, a significant impact on parents’ emotional health and interfere with family activities/cohesion. To date, the main targets of ADHD treatment have focused on reducing the severity of symptoms during the school day and improving academic performance. However, the treatment of ADHD should reach beyond symptom control to address the issues of social competencies and improvement of health-related quality of life from the perspectives of individuals with ADHD and their families, to support them in reaching their full developmental potential. Methylphenidate (MPH) is recognised as the first-line choice of pharmacotherapy for ADHD in children and adolescents. This paper focuses on the importance and benefits to child development of ADHD symptom control beyond the school day only, i.e. extending into late afternoon and evening and uses the example of an extended-release MPH formulation (OROS® MPH) to demonstrate the potential benefits of active full day coverage (12 h) with a single daily dose. Concerns of long-term stimulant treatment are also discussed
Metal-Poor Stars and the Chemical Enrichment of the Universe
Metal-poor stars hold the key to our understanding of the origin of the
elements and the chemical evolution of the Universe. This chapter describes the
process of discovery of these rare stars, the manner in which their surface
abundances (produced in supernovae and other evolved stars) are determined from
the analysis of their spectra, and the interpretation of their abundance
patterns to elucidate questions of origin and evolution. More generally,
studies of these stars contribute to other fundamental areas that include
nuclear astrophysics, conditions at the earliest times, the nature of the first
stars, and the formation and evolution of galaxies -- including our own Milky
Way. We illustrate this with results from studies of lithium formed during the
Big Bang; of stars dated to within ~1 Gyr of that event; of the most metal-poor
stars, with abundance signatures very different from all other stars; and of
the build-up of the elements over the first several Gyr. The combination of
abundance and kinematic signatures constrains how the Milky Way formed, while
recent discoveries of extremely metal-poor stars in the Milky Way's dwarf
galaxy satellites constrain the hierarchical build-up of its stellar halo from
small dark-matter dominated systems. [abridged]Comment: Book chapter, emulated version, 34 pages; number of references are
limited by publisher; to appear in Vol. 5 of textbook "Planets, Stars and
Stellar Systems", by Springer, in 201
Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star
Every supernova so far observed has been considered to be the terminal explosion of a star. Moreover, all supernovae with absorption lines in their spectra show those lines decreasing in velocity over time, as the ejecta expand and thin, revealing slower-moving material that was previously hidden. In addition, every supernova that exhibits the absorption lines of hydrogen has one main light-curve peak, or a plateau in luminosity, lasting approximately 100 days before declining1. Here we report observations of iPTF14hls, an event that has spectra identical to a hydrogen-rich core-collapse supernova, but characteristics that differ extensively from those of known supernovae. The light curve has at least five peaks and remains bright for more than 600 days; the absorption lines show little to no decrease in velocity; and the radius of the line-forming region is more than an order of magnitude bigger than the radius of the photosphere derived from the continuum emission. These characteristics are consistent with a shell of several tens of solar masses ejected by the progenitor star at supernova-level energies a few hundred days before a terminal explosion. Another possible eruption was recorded at the same position in 1954. Multiple energetic pre-supernova eruptions are expected to occur in stars of 95 to 130 solar masses, which experience the pulsational pair instability2,3,4,5. That model, however, does not account for the continued presence of hydrogen, or the energetics observed here. Another mechanism for the violent ejection of mass in massive stars may be required
Production of dust by massive stars at high redshift
The large amounts of dust detected in sub-millimeter galaxies and quasars at
high redshift pose a challenge to galaxy formation models and theories of
cosmic dust formation. At z > 6 only stars of relatively high mass (> 3 Msun)
are sufficiently short-lived to be potential stellar sources of dust. This
review is devoted to identifying and quantifying the most important stellar
channels of rapid dust formation. We ascertain the dust production efficiency
of stars in the mass range 3-40 Msun using both observed and theoretical dust
yields of evolved massive stars and supernovae (SNe) and provide analytical
expressions for the dust production efficiencies in various scenarios. We also
address the strong sensitivity of the total dust productivity to the initial
mass function. From simple considerations, we find that, in the early Universe,
high-mass (> 3 Msun) asymptotic giant branch stars can only be dominant dust
producers if SNe generate <~ 3 x 10^-3 Msun of dust whereas SNe prevail if they
are more efficient. We address the challenges in inferring dust masses and
star-formation rates from observations of high-redshift galaxies. We conclude
that significant SN dust production at high redshift is likely required to
reproduce current dust mass estimates, possibly coupled with rapid dust grain
growth in the interstellar medium.Comment: 72 pages, 9 figures, 5 tables; to be published in The Astronomy and
Astrophysics Revie
Can enemy release explain the invasion success of the diploid Leucanthemum vulgare in North America?
Biological function in the twilight zone of sequence conservation
Abstract Strong DNA conservation among divergent species is an indicator of enduring functionality. With weaker sequence conservation we enter a vast ‘twilight zone’ in which sequence subject to transient or lower constraint cannot be distinguished easily from neutrally evolving, non-functional sequence. Twilight zone functional sequence is illuminated instead by principles of selective constraint and positive selection using genomic data acquired from within a species’ population. Application of these principles reveals that despite being biochemically active, most twilight zone sequence is not functional
- …