100 research outputs found

    E-Cigarettes and Toxin Exposure: In response

    Get PDF

    E-cigarettes: online survey of UK smoking cessation practitioners.

    Get PDF
    Use of e-cigarettes (inhalable vapour producing battery powered devices that aim to simulate tobacco cigarettes), is rising in a number of countries, but as yet none of these products are regulated as medicinal devices or available as smoking cessation treatments. Smokers seeking support from health professionals to stop smoking are interested in e-cigarettes and may be buying them to aid a quit attempt. Determining what smokers are asking, and what health professionals think about these products may have implications for smoking treatment services in a number of countries

    Comparison of the characteristics of long-term users of electronic cigarettes versus nicotine replacement therapy: A cross-sectional survey of English ex-smokers and current smokers

    Get PDF
    Electronic cigarettes (ECs) and nicotine replacement therapy (NRT) are non-combustible nicotine delivery devices being widely used as a partial or a complete long-term substitute for smoking. Little is known about the characteristics of long-term users, their smoking behaviour, attachment to smoking, experience of nicotine withdrawal symptoms, or their views on these devices. This study aimed to provide preliminary evidence on this and compare users of the different products

    E-cigarette puffing patterns associated with high and low nicotine e-liquid strength: effects on toxicant and carcinogen exposure

    Get PDF
    Contrary to intuition, use of lower strength nicotine e-liquids might not offer reduced health risk if compensatory puffing behaviour occurs. Compensatory puffing (e.g. more frequent, longer puffs) or user behaviour (increasing the wattage) can lead to higher temperatures at which glycerine and propylene glycol (solvents used in e-liquids) undergo decomposition to carbonyl compounds, including the carcinogens formaldehyde and acetaldehyde. This study aims to document puffing patterns and user behaviour associated with using high and low strength nicotine e-liquid and associated toxicant/carcinogen exposure in experienced e-cigarette users (known as vapers herein)

    Nicotine delivery to users from cigarettes and from different types of e-cigarettes

    Get PDF
    BACKGROUND: Delivering nicotine in the way smokers seek is likely to be the key factor in e-cigarette (EC) success in replacing cigarettes. We examined to what degree different types of EC mimic nicotine intake from cigarettes. METHODS: Twelve participants (‘dual users’ of EC and cigarettes) used their own brand cigarette and nine different EC brands. Blood samples were taken at baseline and at 2-min intervals for 10 min and again at 30 min. RESULTS: Eleven smokers provided usable data. None of the EC matched cigarettes in nicotine delivery (C (max) = 17.9 ng/ml, T (max) = 4 min and AUC(0–>30) = 315 ng/ml/min). The EC with 48 mg/ml nicotine generated the closest PK profile (C (max) = 13.6 ng/ml, T (max) = 4 min, AUC(0–>30) = 245 ng/ml/min), followed by a third generation EC using 20 mg/ml nicotine (C (max) = 11.9 ng/ml, T (max) = 6 min, AUC(0–>30) = 232 ng/ml/min), followed by the tank system using 20 mg/ml nicotine (C (max) = 9.9 ng/ml, T (max) = 6 min, AUC(0–>30) = 201 ng/ml/min). Cig-a-like PK values were similar, ranging from C (max) 7.5 to 9.7 ng/ml, T (max) 4-6 min, and AUC(0–>30) 144 to 173 ng/ml/min. Moderate differences in e-liquid nicotine concentrations had little effect on nicotine delivery, e.g. the EC with 24 mg/ml cartridge had the same PK profile as ECs with 16 mg/ml cartridges. Using similar strength e-liquid, the tank EC provided significantly more nicotine than cig-a-like ECs. CONCLUSIONS: EC brands we tested do not deliver nicotine as efficiently as cigarettes, but newer EC products deliver nicotine more efficiently than cig-a-like brands. Moderate variations in nicotine content of e-liquid have little effect on nicotine delivery. Smokers who are finding cig-a-like EC unsatisfactory should be advised to try more advanced systems

    Reduced Exercise Tolerance and Pulmonary Capillary Recruitment with Remote Secondhand Smoke Exposure

    Get PDF
    RATIONALE: Flight attendants who worked on commercial aircraft before the smoking ban in flights (pre-ban FAs) were exposed to high levels of secondhand smoke (SHS). We previously showed never-smoking pre-ban FAs to have reduced diffusing capacity (Dco) at rest. METHODS: To determine whether pre-ban FAs increase their Dco and pulmonary blood flow (Qc) during exercise, we administered a symptom-limited supine-posture progressively increasing cycle exercise test to determine the maximum work (watts) and oxygen uptake (VO2) achieved by FAs. After 30 min rest, we then measured Dco and Qc at 20, 40, 60, and 80 percent of maximum observed work. RESULTS: The FAs with abnormal resting Dco achieved a lower level of maximum predicted work and VO2 compared to those with normal resting Dco (mean±SEM; 88.7±2.9 vs. 102.5±3.1%predicted VO2; p = 0.001). Exercise limitation was associated with the FAs' FEV(1) (r = 0.33; p = 0.003). The Dco increased less with exercise in those with abnormal resting Dco (mean±SEM: 1.36±0.16 vs. 1.90±0.16 ml/min/mmHg per 20% increase in predicted watts; p = 0.020), and amongst all FAs, the increase with exercise seemed to be incrementally lower in those with lower resting Dco. Exercise-induced increase in Qc was not different in the two groups. However, the FAs with abnormal resting Dco had less augmentation of their Dco with increase in Qc during exercise (mean±SEM: 0.93±0.06 vs. 1.47±0.09 ml/min/mmHg per L/min; p<0.0001). The Dco during exercise was inversely associated with years of exposure to SHS in those FAs with ≥10 years of pre-ban experience (r = -0.32; p = 0.032). CONCLUSIONS: This cohort of never-smoking FAs with SHS exposure showed exercise limitation based on their resting Dco. Those with lower resting Dco had reduced pulmonary capillary recruitment. Exposure to SHS in the aircraft cabin seemed to be a predictor for lower Dco during exercise
    • …
    corecore