20 research outputs found

    Using a 3D virtual muscle model to link gene expression changes during myogenesis to protein spatial location in muscle

    Get PDF
    Background: Myogenesis is an ordered process whereby mononucleated muscle precursor cells (myoblasts) fuse into multinucleated myotubes that eventually differentiate into myofibres, involving substantial changes in gene expression and the organisation of structural components of the cells. To gain further insight into the orchestration of these structural changes we have overlaid the spatial organisation of the protein components of a muscle cell with their gene expression changes during differentiation using a new 3D visualisation tool: the Virtual Muscle 3D (VMus3D)

    Purification of replicating pancreatic β-cells for gene expression studies

    Get PDF
    β-cell proliferation is a rare event in adult pancreatic islets. To study the replication-related β-cell biology we designed a replicating β-cells sorting system for gene expression experiments. Replicating β-cells were identified by EdU incorporation and purified by flow cytometry. For β-cell separation islet cells were sorted by size, granularity and Newport Green fluorescence emission that was combined with emitted fluorescence for EdU-labelled replicating cells sorting. The purity of the resulting sorted populations was evaluated by insulin staining and EdU for β-cell identification and for replicating cells, respectively. Total RNA was isolated from purified cell-sorted populations for gene expression analysis. Cell sorting of dispersed islet cells resulted in 96.2% purity for insulin positivity in the collected β-cell fraction and 100% efficiency of the EdU-based cell separation. RNA integrity was similar between FACS-sorted replicating and quiescent β-cells. Global transcriptome analysis of replicating vs quiescent β-cells showed the expected enrichment of categories related to cell division and DNA replication. Indeed, key genes in the spindle check-point were the most upregulated genes in replicating β-cells. This work provides a method that allows for the isolation of replicating β-cells, a very scarce population in adult pancreatic islets

    Early pancreatic islet fate and maturation is controlled through RBP-Jκ

    No full text
    Notch signaling is known to control early pancreatic differentiation through Ngn3 repression. In later stages, downstream of Notch, the Presenilins are still required to maintain the endocrine fate allocation. Amongst their multiple targets, it remains unclear which one actually controls the maintenance of the fate of the early islets. Conditional deletions of the Notch effector RBP-Jκ with lineage tracing in Presenilin-deficient endocrine progenitors, demonstrated that this factor is central to the control of the fate through a non-canonical Notch mechanism. RBP-Jκ mice exhibit normal islet morphogenesis and function, however, a fraction of the progenitors fails to differentiate and develop into disorganized masses resembling acinar to ductal metaplasia and chronic pancreatitis. A subsequent deletion of RBP-Jκ in forming β-cells led to the transdifferentiation into the other endocrine cells types, indicating that this factor still mediates the maintenance of the fate within the endocrine lineage itself. These results highlight the dual importance of Notch signaling for the endocrine lineage. Even after Ngn3 expression, Notch activity is required to maintain both fate and maturation of the Ngn3 progenitors. In a subset of the cells, these alterations of Notch signaling halt their differentiation and leads to acinar to ductal metaplasia
    corecore