104 research outputs found

    Effects of testicular microlithiasis on Doppler parameters: report of three cases

    Get PDF
    BACKGROUND: Testicular microlithiasis is a rare, usually asymptomatic, non-progressive disease of the testes associated with various genetic anomalies, infertility and testicular tumors. According to our literature search, there is no specific data about Doppler findings in this disease. CASE PRESENTATION: Doppler findings of three cases of testicular microlithiasis during last two years in our institution are presented. CONCLUSIONS: Although our hypothesis was to find increased Doppler parameters due to intratesticular arterial compression, our findings suggest that there are no Doppler findings specific to testicular microlithiasis

    Subacute Sclerosing Panencephalitis: Results of the Canadian Paediatric Surveillance Program and review of the literature

    Get PDF
    BACKGROUND: Subacute Sclerosing Panencephalitis (SSPE) is so rare in developed countries with measles immunization programs that national active surveillance is now needed to capture sufficient number of cases for meaningful analysis of data. Through the Canadian Paediatric Surveillance Program (CPSP), the SSPE study was able to document a national incidence and determine the epidemiology of affected Canadian children. METHODS: Between 1997 and 2000, the CPSP surveyed monthly 1978 to 2294 Canadian pediatricians and sub-specialists for SSPE cases. The response rate varied from 82–86% over those years. RESULTS: Altogether, four SSPE cases were reported to the CPSP: one case before, two during and one after the study period. The incidence of SSPE in Canadian children was 0.06/million children/year. Of the four cases, diagnosed between ages four and 17 years, three children had measles infection in infancy. All children showed a progressive course of dementia, loss of motor skills and epilepsy. Two children were treated with isoprinosine and intraventricular interferon but died in less than three years from disease onset. One child did not have any treatment and died after seven years of illness. One child received intraventricular ribavirin and remains alive, but markedly impaired, nine years following diagnosis. CONCLUSION: The CPSP has demonstrated that Canadian paediatricians and paediatric neurologists may encounter cases of SSPE. This report highlights the clinical course of affected Canadian children and provides a review of the disease and its management

    Unpredictability of metabolism—the key role of metabolomics science in combination with next-generation genome sequencing

    Get PDF
    Next-generation sequencing provides technologies which sequence whole prokaryotic and eukaryotic genomes in days, perform genome-wide association studies, chromatin immunoprecipitation followed by sequencing and RNA sequencing for transcriptome studies. An exponentially growing volume of sequence data can be anticipated, yet functional interpretation does not keep pace with the amount of data produced. In principle, these data contain all the secrets of living systems, the genotype–phenotype relationship. Firstly, it is possible to derive the structure and connectivity of the metabolic network from the genotype of an organism in the form of the stoichiometric matrix N. This is, however, static information. Strategies for genome-scale measurement, modelling and predicting of dynamic metabolic networks need to be applied. Consequently, metabolomics science—the quantitative measurement of metabolism in conjunction with metabolic modelling—is a key discipline for the functional interpretation of whole genomes and especially for testing the numerical predictions of metabolism based on genome-scale metabolic network models. In this context, a systematic equation is derived based on metabolomics covariance data and the genome-scale stoichiometric matrix which describes the genotype–phenotype relationship

    Characterising chromosome rearrangements: recent technical advances in molecular cytogenetics

    Get PDF
    Genomic rearrangements can result in losses, amplifications, translocations and inversions of DNA fragments thereby modifying genome architecture, and potentially having clinical consequences. Many genomic disorders caused by structural variation have initially been uncovered by early cytogenetic methods. The last decade has seen significant progression in molecular cytogenetic techniques, allowing rapid and precise detection of structural rearrangements on a whole-genome scale. The high resolution attainable with these recently developed techniques has also uncovered the role of structural variants in normal genetic variation alongside single-nucleotide polymorphisms (SNPs). We describe how array-based comparative genomic hybridisation, SNP arrays, array painting and next-generation sequencing analytical methods (read depth, read pair and split read) allow the extensive characterisation of chromosome rearrangements in human genomes

    Evolution of Salmonella enterica Virulence via Point Mutations in the Fimbrial Adhesin

    Get PDF
    Whereas the majority of pathogenic Salmonella serovars are capable of infecting many different animal species, typically producing a self-limited gastroenteritis, serovars with narrow host-specificity exhibit increased virulence and their infections frequently result in fatal systemic diseases. In our study, a genetic and functional analysis of the mannose-specific type 1 fimbrial adhesin FimH from a variety of serovars of Salmonella enterica revealed that specific mutant variants of FimH are common in host-adapted (systemically invasive) serovars. We have found that while the low-binding shear-dependent phenotype of the adhesin is preserved in broad host-range (usually systemically non-invasive) Salmonella, the majority of host-adapted serovars express FimH variants with one of two alternative phenotypes: a significantly increased binding to mannose (as in S. Typhi, S. Paratyphi C, S. Dublin and some isolates of S. Choleraesuis), or complete loss of the mannose-binding activity (as in S. Paratyphi B, S. Choleraesuis and S. Gallinarum). The functional diversification of FimH in host-adapted Salmonella results from recently acquired structural mutations. Many of the mutations are of a convergent nature indicative of strong positive selection. The high-binding phenotype of FimH that leads to increased bacterial adhesiveness to and invasiveness of epithelial cells and macrophages usually precedes acquisition of the non-binding phenotype. Collectively these observations suggest that activation or inactivation of mannose-specific adhesive properties in different systemically invasive serovars of Salmonella reflects their dynamic trajectories of adaptation to a life style in specific hosts. In conclusion, our study demonstrates that point mutations are the target of positive selection and, in addition to horizontal gene transfer and genome degradation events, can contribute to the differential pathoadaptive evolution of Salmonella

    Global assessment of genomic variation in cattle by genome resequencing and high-throughput genotyping

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Integration of genomic variation with phenotypic information is an effective approach for uncovering genotype-phenotype associations. This requires an accurate identification of the different types of variation in individual genomes.</p> <p>Results</p> <p>We report the integration of the whole genome sequence of a single Holstein Friesian bull with data from single nucleotide polymorphism (SNP) and comparative genomic hybridization (CGH) array technologies to determine a comprehensive spectrum of genomic variation. The performance of resequencing SNP detection was assessed by combining SNPs that were identified to be either in identity by descent (IBD) or in copy number variation (CNV) with results from SNP array genotyping. Coding insertions and deletions (indels) were found to be enriched for size in multiples of 3 and were located near the N- and C-termini of proteins. For larger indels, a combination of split-read and read-pair approaches proved to be complementary in finding different signatures. CNVs were identified on the basis of the depth of sequenced reads, and by using SNP and CGH arrays.</p> <p>Conclusions</p> <p>Our results provide high resolution mapping of diverse classes of genomic variation in an individual bovine genome and demonstrate that structural variation surpasses sequence variation as the main component of genomic variability. Better accuracy of SNP detection was achieved with little loss of sensitivity when algorithms that implemented mapping quality were used. IBD regions were found to be instrumental for calculating resequencing SNP accuracy, while SNP detection within CNVs tended to be less reliable. CNV discovery was affected dramatically by platform resolution and coverage biases. The combined data for this study showed that at a moderate level of sequencing coverage, an ensemble of platforms and tools can be applied together to maximize the accurate detection of sequence and structural variants.</p

    Polyurethane composite adsorbent using solid phase extraction method for preconcentration of metal ion from aqueous solution

    Get PDF
    Polyurethane composite adsorbent polymeric material was prepared and investigated for selected solid-phase extraction for metal ions, prior to its determination by inductively coupled plasma optical emission spectrometry. The surface characterisation was done using Fourier transform infrared spectroscopy. The separation and preconcentration conditions of the analytes investigated includes influence of pH, sample loading flow rate, elution flow rate, type and concentration of eluents. The optimum pH for the highest efficient recoveries for all metal ions, which ranged from 70 to 85 %, is pH 7. The metal ions were quantitatively eluted with 5 mL of 2 mol/L HNO3. Common coexisting ions did not interfere with the separation. The percentage recovery of the metal ions ranged between 70 and 89 %, while the results for the limit of detection and limit of quantification ranged from 0.249 to 0.256 and 0.831 to 0.855, respectively. The experimental tests showed good preconcentration results of trace levels of metal ions using synthesised polyurethane polymer adsorbent composite

    Fire performance of phase change material enhanced plasterboard

    Get PDF
    Sustainable construction materials are increasingly being used to reduce the carbon footprint of modern buildings. These materials have the potential to change the fire dynamics of compartments by altering the compartment energy balance however there is little quantitative understanding of how these materials behave in the event of a real fire. The changes in fire dynamics may be due to increased fuel load in a compartment, reduced time to failure or promotion of flame spread. The objective of this research is to quantify how Phase Change Materials (PCMs) perform in realistic fire scenarios. It was found that a plasterboard product containing microencapsulated PCMs will behave similarly to a charring solid and have the potential to contribute significant fuel to a compartment fire but that they maintain integrity for the duration of flaming period. The critical heat flux for this product was determined in the cone calorimeter to be 17.5 ± 2.5 kW m−2, the peak heat release rate and mass loss rate ranged from 60.2 kW m−2 to 107 kW m−2 and 1.88 g s−1 m−2 to 8.47 g s−1 m−2 respectively for exposures between 20 kW m−2 and 70 kW m−2. Sample orientation was found to increase the peak heat release rate by up to 25%, whilst having little to no effect on the mass loss rate. These parameters, in addition to the in-depth temperature evolution and ignition properties, can be used as design criteria for balancing energy savings with quantified fire performance
    corecore