80 research outputs found

    Early ART-initiation and longer ART duration reduces HIV-1 proviral DNA levels in children from the CHER trial

    Get PDF
    Background Reduction of the reservoir of latent HIV-infected cells might increase the possibility of long-term remission in individuals living with HIV. We investigated factors associated with HIV-1 proviral DNA levels in children receiving different antiretroviral therapy (ART) strategies in the children with HIV early antiretroviral therapy (CHER) trial. Methods Infants with HIV  <  12 weeks old with CD4%  ≥  25% were randomized in the CHER trial to early limited ART for 40 or 96 weeks (ART-40 W, ART-96 W), or deferred ART (ART-Def). For ART-Def infants or following ART interruption in ART-40 W/ART-96 W, ART was started/re-started for clinical progression or CD4%  <  25%. In 229 participants, HIV-1 proviral DNA was quantified by PCR from stored peripheral blood mononuclear cells from children who had received  ≥  24 weeks ART and two consecutive undetectable HIV-1 RNA 12–24 weeks apart. HIV-1 proviral DNA was compared between ART-Def and ART-96 W at week 96, and in all arms at week 248. Factors associated with HIV-1 proviral DNA levels were evaluated using linear regression. Findings Longer duration of ART was significantly associated with lower HIV-1 proviral DNA at both 96 (p  =  0.0003) and 248 weeks (p  =  0.0011). Higher total CD8 count at ART initiation was associated with lower HIV-1 proviral DNA at both 96 (p  =  0.0225) and 248 weeks (p  =  0.0398). Week 248 HIV-1 proviral DNA was significantly higher in those with positive HIV-1 serology at week 84 than those with negative serology (p  =  0.0042). Intepretation Longer ART duration is key to HIV-1 proviral DNA reduction. Further understanding is needed of the effects of “immune-attenuation” through early HIV-1 exposure. Funding Wellcome Trust, National Institutes of Health, Medical Research Council

    RIPCAL: a tool for alignment-based analysis of repeat-induced point mutations in fungal genomic sequences

    Get PDF
    Background Repeat-induced point mutation (RIP) is a fungal-specific genome defence mechanism that alters the sequences of repetitive DNA, thereby inactivating coding genes. Repeated DNA sequences align between mating and meiosis and both sequences undergo C:G to T:A transitions. In most fungi these transitions preferentially affect CpA di-nucleotides thus altering the frequency of certain di-nucleotides in the affected sequences. The majority of previously published in silico analyses were limited to the comparison of ratios of pre- and post-RIP di-nucleotides in putatively RIP-affected sequences – so-called RIP indices. The analysis of RIP is significantly more informative when comparing sequence alignments of repeated sequences. There is, however, a dearth of bioinformatics tools available to the fungal research community for alignment-based RIP analysis of repeat families. Results We present RIPCAL http://www.sourceforge.net/projects/ripcal, a software tool for the automated analysis of RIP in fungal genomic DNA repeats, which performs both RIP index and alignment-based analyses. We demonstrate the ability of RIPCAL to detect RIP within known RIP-affected sequences of Neurospora crassa and other fungi. We also predict and delineate the presence of RIP in the genome of Stagonospora nodorum – a Dothideomycete pathogen of wheat. We show that RIP has affected different members of the S. nodorum rDNA tandem repeat to different extents depending on their genomic contexts. Conclusion The RIPCAL alignment-based method has considerable advantages over RIP indices for the analysis of whole genomes. We demonstrate its application to the recently published genome assembly of S. nodorum

    Psychosocial correlates of dietary fat intake in African-American adults: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current dietary guidelines recommend that dietary fat should comprise 20–35% percent of total energy intake, with less than 10% of energy from saturated fat. However, many Americans exceed these goals and data suggest that African Americans tend to consume a higher percentage of energy from dietary fat than Whites. Because diets low in dietary fat, particularly saturated fat, are associated with lower risk for many chronic illnesses, it is important to identify strategies to reduce high fat intakes. This study examined associations of psychosocial factors with dietary fat intake in African American adults 18 to 70 years.</p> <p>Methods</p> <p>Data are self-reported from a cross-sectional survey of African Americans (n = 658) using an 11-page questionnaire, collected from June to October 2003. Associations of psychosocial (predisposing, reinforcing, and enabling) factors based on the PRECEDE framework, dietary fat-related behaviors, and participant characteristics (e.g., age, sex, education, BMI) with total and saturated fat consumption are described using linear regression and analysis of variance.</p> <p>Results</p> <p>The mean age of participants was 43.9 years, 57% were female, 37% were college graduates, and 76% were overweight/obese. Respondents with lower fat intakes were female, older, had high education and very good/excellent perceived health. Among the psychosocial factors, the strongest (inverse) associations with fat intake were with two predisposing factors: <it>belief in the importance of a low-fat diet </it>(both genders) and <it>high self-efficacy </it>(women only). Fat intake was also significantly lower among participants who could <it>count on those close for encouragement to eat healthy foods </it>(a reinforcing factor) and among men who <it>needed more information about preparing healthy foods </it>(an enabling factor).</p> <p>Conclusion</p> <p>Dietary interventions to decrease fat intake in African American adults may benefit from incorporating predisposing factors, such as personal beliefs and self-efficacy, in their design and implementation.</p

    Simple sequence repeats in Neurospora crassa: distribution, polymorphism and evolutionary inference

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Simple sequence repeats (SSRs) have been successfully used for various genetic and evolutionary studies in eukaryotic systems. The eukaryotic model organism <it>Neurospora crassa </it>is an excellent system to study evolution and biological function of SSRs.</p> <p>Results</p> <p>We identified and characterized 2749 SSRs of 963 SSR types in the genome of <it>N. crassa</it>. The distribution of tri-nucleotide (nt) SSRs, the most common SSRs in <it>N. crassa</it>, was significantly biased in exons. We further characterized the distribution of 19 abundant SSR types (AST), which account for 71% of total SSRs in the <it>N. crassa </it>genome, using a Poisson log-linear model. We also characterized the size variation of SSRs among natural accessions using Polymorphic Index Content (PIC) and ANOVA analyses and found that there are genome-wide, chromosome-dependent and local-specific variations. Using polymorphic SSRs, we have built linkage maps from three line-cross populations.</p> <p>Conclusion</p> <p>Taking our computational, statistical and experimental data together, we conclude that 1) the distributions of the SSRs in the sequenced N. crassa genome differ systematically between chromosomes as well as between SSR types, 2) the size variation of tri-nt SSRs in exons might be an important mechanism in generating functional variation of proteins in <it>N. crassa</it>, 3) there are different levels of evolutionary forces in variation of amino acid repeats, and 4) SSRs are stable molecular markers for genetic studies in <it>N. crassa</it>.</p

    Genomic and Proteomic Analyses of the Fungus Arthrobotrys oligospora Provide Insights into Nematode-Trap Formation

    Get PDF
    Nematode-trapping fungi are “carnivorous” and attack their hosts using specialized trapping devices. The morphological development of these traps is the key indicator of their switch from saprophytic to predacious lifestyles. Here, the genome of the nematode-trapping fungus Arthrobotrys oligospora Fres. (ATCC24927) was reported. The genome contains 40.07 Mb assembled sequence with 11,479 predicted genes. Comparative analysis showed that A. oligospora shared many more genes with pathogenic fungi than with non-pathogenic fungi. Specifically, compared to several sequenced ascomycete fungi, the A. oligospora genome has a larger number of pathogenicity-related genes in the subtilisin, cellulase, cellobiohydrolase, and pectinesterase gene families. Searching against the pathogen-host interaction gene database identified 398 homologous genes involved in pathogenicity in other fungi. The analysis of repetitive sequences provided evidence for repeat-induced point mutations in A. oligospora. Proteomic and quantitative PCR (qPCR) analyses revealed that 90 genes were significantly up-regulated at the early stage of trap-formation by nematode extracts and most of these genes were involved in translation, amino acid metabolism, carbohydrate metabolism, cell wall and membrane biogenesis. Based on the combined genomic, proteomic and qPCR data, a model for the formation of nematode trapping device in this fungus was proposed. In this model, multiple fungal signal transduction pathways are activated by its nematode prey to further regulate downstream genes associated with diverse cellular processes such as energy metabolism, biosynthesis of the cell wall and adhesive proteins, cell division, glycerol accumulation and peroxisome biogenesis. This study will facilitate the identification of pathogenicity-related genes and provide a broad foundation for understanding the molecular and evolutionary mechanisms underlying fungi-nematodes interactions

    Eccentric Exercise Activates Novel Transcriptional Regulation of Hypertrophic Signaling Pathways Not Affected by Hormone Changes

    Get PDF
    Unaccustomed eccentric exercise damages skeletal muscle tissue, activating mechanisms of recovery and remodeling that may be influenced by the female sex hormone 17β-estradiol (E2). Using high density oligonucleotide based microarrays, we screened for differences in mRNA expression caused by E2 and eccentric exercise. After random assignment to 8 days of either placebo (CON) or E2 (EXP), eighteen men performed 150 single-leg eccentric contractions. Muscle biopsies were collected at baseline (BL), following supplementation (PS), +3 hours (3H) and +48 hours (48H) after exercise. Serum E2 concentrations increased significantly with supplementation (P<0.001) but did not affect microarray results. Exercise led to early transcriptional changes in striated muscle activator of Rho signaling (STARS), Rho family GTPase 3 (RND3), mitogen activated protein kinase (MAPK) regulation and the downstream transcription factor FOS. Targeted RT-PCR analysis identified concurrent induction of negative regulators of calcineurin signaling RCAN (P<0.001) and HMOX1 (P = 0.009). Protein contents were elevated for RND3 at 3H (P = 0.02) and FOS at 48H (P<0.05). These findings indicate that early RhoA and NFAT signaling and regulation are altered following exercise for muscle remodeling and repair, but are not affected by E2

    Pathogenic Huntingtin Repeat Expansions in Patients with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis.

    Get PDF
    We examined the role of repeat expansions in the pathogenesis of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) by analyzing whole-genome sequence data from 2,442 FTD/ALS patients, 2,599 Lewy body dementia (LBD) patients, and 3,158 neurologically healthy subjects. Pathogenic expansions (range, 40-64 CAG repeats) in the huntingtin (HTT) gene were found in three (0.12%) patients diagnosed with pure FTD/ALS syndromes but were not present in the LBD or healthy cohorts. We replicated our findings in an independent collection of 3,674 FTD/ALS patients. Postmortem evaluations of two patients revealed the classical TDP-43 pathology of FTD/ALS, as well as huntingtin-positive, ubiquitin-positive aggregates in the frontal cortex. The neostriatal atrophy that pathologically defines Huntington's disease was absent in both cases. Our findings reveal an etiological relationship between HTT repeat expansions and FTD/ALS syndromes and indicate that genetic screening of FTD/ALS patients for HTT repeat expansions should be considered
    corecore