16 research outputs found

    Calf health and management in smallholder dairy farms in Tanzania

    Get PDF
    Smallholder farmers’ knowledge and practice of dairy calf management on 129 farms with calves less than 10 months of age in Southeastern and Southern Highland areas of Tanzania was assessed. The method of study included both a farm visit and completion of a questionnaire. Most of the farmers were female, with a primary level of education, and majority kept 1–3 milking cows that yielded 6–10 l milk/cow/day. Most of the calves were fed milk using a residual calf suckling system. Weaning age was 3–8 months. Overall, the body condition of the calves was poor, ranged from 1 to 2.5 with a mode of 2. The majority of the farmers believed that helminthosis was the most common disease condition affecting the calves; diarrhea was ranked as the second. Calf death was reported by 20% of the farmers to have occurred in their herd lasting the 2 years prior to the study. Calf body condition score was related to body weight for calves younger than 9 weeks, and older than 23 weeks of age, whereas no such relationship existed in the age group 9 to 23 weeks. The sex distribution was skewed with less male calves being older than 23 weeks. We hypothesize that male calves experience inferior management compared with female calves. This study demonstrates a low level of knowledge on, and poor practices of calf management among the surveyed farmers that suggest the need for educational intervention

    Species Association of Hepatitis B Virus (HBV) in Non-Human Apes; Evidence for Recombination between Gorilla and Chimpanzee Variants

    Get PDF
    Hepatitis B virus (HBV) infections are widely distributed in humans, infecting approximately one third of the world's population. HBV variants have also been detected and genetically characterised from Old World apes; Gorilla gorilla (gorilla), Pan troglodytes (chimpanzee), Pongo pygmaeus (orang-utan), Nomascus nastusus and Hylobates pileatus (gibbons) and from the New World monkey, Lagothrix lagotricha (woolly monkey). To investigate species-specificity and potential for cross species transmission of HBV between sympatric species of apes (such as gorillas and chimpanzees in Central Africa) or between humans and chimpanzees or gorillas, variants of HBV infecting captive wild-born non-human primates were genetically characterised. 9 of 62 chimpanzees (11.3%) and two from 11 gorillas (18%) were HBV-infected (15% combined frequency), while other Old world monkey species were negative. Complete genome sequences were obtained from six of the infected chimpanzee and both gorillas; those from P. t .ellioti grouped with previously characterised variants from this subspecies. However, variants recovered from P. t. troglodytes HBV variants also grouped within this clade, indicative of transmission between sub-species, forming a paraphyletic clade. The two gorilla viruses were phylogenetically distinct from chimpanzee and human variants although one showed evidence for a recombination event with a P.t.e.-derived HBV variant in the partial X and core gene region. Both of these observations provide evidence for circulation of HBV between different species and sub-species of non-human primates, a conclusion that differs from the hypothesis if of strict host specificity of HBV genotypes

    Age of the Association between Helicobacter pylori and Man

    Get PDF
    When modern humans left Africa ca. 60,000 years ago (60 kya), they were already infected with Helicobacter pylori, and these bacteria have subsequently diversified in parallel with their human hosts. But how long were humans infected by H. pylori prior to the out-of-Africa event? Did this co-evolution predate the emergence of modern humans, spanning the species divide? To answer these questions, we investigated the diversity of H. pylori in Africa, where both humans and H. pylori originated. Three distinct H. pylori populations are native to Africa: hpNEAfrica in Afro-Asiatic and Nilo-Saharan speakers, hpAfrica1 in Niger-Congo speakers and hpAfrica2 in South Africa. Rather than representing a sustained co-evolution over millions of years, we find that the coalescent for all H. pylori plus its closest relative H. acinonychis dates to 88–116 kya. At that time the phylogeny split into two primary super-lineages, one of which is associated with the former hunter-gatherers in southern Africa known as the San. H. acinonychis, which infects large felines, resulted from a later host jump from the San, 43–56 kya. These dating estimates, together with striking phylogenetic and quantitative human-bacterial similarities show that H. pylori is approximately as old as are anatomically modern humans. They also suggest that H. pylori may have been acquired via a single host jump from an unknown, non-human host. We also find evidence for a second Out of Africa migration in the last 52,000 years, because hpEurope is a hybrid population between hpAsia2 and hpNEAfrica, the latter of which arose in northeast Africa 36–52 kya, after the Out of Africa migrations around 60 kya

    Use of insecticide-treated clothes for personal protection against malaria: a community trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The study sought to determine the effect of using insecticide-treated clothes (ITCs) on personal protection against malaria infection. The specific objectives were to determine the effect of using ITCs on the rate of infection with malaria parasites and the effect on indoor mosquito density.</p> <p>Methods</p> <p>This study was done in Dadaab refugee camps, North Eastern Province Kenya between April and August 2002, and involved a total of 198 participants, all refugees of Somali origin. The participants were selected through multi-stage cluster sampling. Half of the participants (treatment group) had their personal clothes worn on a daily basis (<it>Diras, Saris, Jalbaab</it>s, <it>Ma'awis </it>and shirts) and their bedding (sheets and blankets) treated with insecticide (permethrin). The other half (comparison group) had their clothes treated with placebo (plain water). Indoor mosquito density was determined from twelve households belonging to the participants; six in the treatment block and six in the comparison block. During pre-test and post-test, laboratory analysis of blood samples was done, indoor mosquito density determined and questionnaires administered. Using STATA statistical package, tests for significant difference between the two groups were conducted.</p> <p>Results</p> <p>Use of ITCs reduced both malaria infection rates and indoor mosquito density significantly. The odds of malaria infection in the intervention group were reduced by about 70 percent. The idea of using ITCs for malaria infection control was easily accepted among the refugees and they considered it beneficial. No side effects related to use of the ITCs were observed from the participants.</p> <p>Conclusion</p> <p>The use of ITCs reduces malaria infection rate and has potential as an appropriate method of malaria control. It is recommended, therefore, that this strategy be considered for use among poor communities like slum dwellers and other underprivileged communities, such as street children and refugees, especially during an influx to malaria-prone regions. Further research on cost-effectiveness and sustainability of this strategy is worthwhile.</p
    corecore