196 research outputs found
Cellular Radiosensitivity: How much better do we understand it?
Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies.
Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation
Limits on WWZ and WW\gamma couplings from p\bar{p}\to e\nu jj X events at \sqrt{s} = 1.8 TeV
We present limits on anomalous WWZ and WW-gamma couplings from a search for
WW and WZ production in p-bar p collisions at sqrt(s)=1.8 TeV. We use p-bar p
-> e-nu jjX events recorded with the D0 detector at the Fermilab Tevatron
Collider during the 1992-1995 run. The data sample corresponds to an integrated
luminosity of 96.0+-5.1 pb^(-1). Assuming identical WWZ and WW-gamma coupling
parameters, the 95% CL limits on the CP-conserving couplings are
-0.33<lambda<0.36 (Delta-kappa=0) and -0.43<Delta-kappa<0.59 (lambda=0), for a
form factor scale Lambda = 2.0 TeV. Limits based on other assumptions are also
presented.Comment: 11 pages, 2 figures, 2 table
Search For Heavy Pointlike Dirac Monopoles
We have searched for central production of a pair of photons with high
transverse energies in collisions at TeV using of data collected with the D\O detector at the Fermilab Tevatron in
1994--1996. If they exist, virtual heavy pointlike Dirac monopoles could
rescatter pairs of nearly real photons into this final state via a box diagram.
We observe no excess of events above background, and set lower 95% C.L. limits
of on the mass of a spin 0, 1/2, or 1 Dirac
monopole.Comment: 12 pages, 4 figure
The Dijet Mass Spectrum and a Search for Quark Compositeness in bar{p}p Collisions at sqrt{s} = 1.8 TeV
Using the DZero detector at the 1.8 TeV pbarp Fermilab Tevatron collider, we
have measured the inclusive dijet mass spectrum in the central pseudorapidity
region |eta_jet| < 1.0 for dijet masses greater than 200 Gev/c^2. We have also
measured the ratio of spectra sigma(|eta_jet| < 0.5)/sigma(0.5 < |eta_jet| <
1.0). The order alpha_s^3 QCD predictions are in good agreement with the data
and we rule out models of quark compositeness with a contact interaction scale
< 2.4 TeV at the 95% confidence level.Comment: 11 pages, 4 figures, 2 tables, submitted to Phys. Rev. Let
Zgamma Production in pbarp Collisions at sqrt(s)=1.8 TeV and Limits on Anomalous ZZgamma and Zgammagamma Couplings
We present a study of Z +gamma + X production in p-bar p collisions at
sqrt{S}=1.8 TeV from 97 (87) pb^{-1} of data collected in the eegamma
(mumugamma) decay channel with the D0 detector at Fermilab. The event yield and
kinematic characteristics are consistent with the Standard Model predictions.
We obtain limits on anomalous ZZgamma and Zgammagamma couplings for form factor
scales Lambda = 500 GeV and Lambda = 750 GeV. Combining this analysis with our
previous results yields 95% CL limits |h{Z}_{30}| < 0.36, |h{Z}_{40}| < 0.05,
|h{gamma}_{30}| < 0.37, and |h{gamma}_{40}| < 0.05 for a form factor scale
Lambda=750 GeV.Comment: 17 Pages including 2 Figures. Submitted to PR
Probing Hard Color-Singlet Exchange in ppbar Collisions at root-s=630 GeV and 1800 GeV
We present results on dijet production via hard color-singlet exchange in
proton-antiproton collisions at root-s = 630 GeV and 1800 GeV using the DZero
detector. The fraction of dijet events produced via color-singlet exchange is
measured as a function of jet transverse energy, separation in pseudorapidity
between the two highest transverse energy jets, and proton-antiproton
center-of-mass energy. The results are consistent with a color-singlet fraction
that increases with an increasing fraction of quark-initiated processes and
inconsistent with two-gluon models for the hard color-singlet.Comment: 16 pages, 6 figure
A Measurement of the W Boson Mass
We report a measurement of the W boson mass based on an integrated luminosity
of 82 pb from \ppbar collisions at TeV recorded in
1994--1995 by the \Dzero detector at the Fermilab Tevatron. We identify W
bosons by their decays to and extract the mass by fitting the transverse
mass spectrum from 28,323 W boson candidates. A sample of 3,563 dielectron
events, mostly due to Z to ee decays, constrains models of W boson production
and the detector. We measure \mw=80.44\pm0.10(stat)\pm0.07(syst)~GeV. By
combining this measurement with our result from the 1992--1993 data set, we
obtain \mw=80.43\pm0.11 GeV.Comment: 11 pages, 5 figure
Diffractive Dijet Production at sqrt(s)=630 and 1800 GeV at the Fermilab Tevatron
We report a measurement of the diffractive structure function of
the antiproton obtained from a study of dijet events produced in association
with a leading antiproton in collisions at GeV at the
Fermilab Tevatron. The ratio of at GeV to
obtained from a similar measurement at GeV is compared with
expectations from QCD factorization and with theoretical predictions. We also
report a measurement of the (-Pomeron) and ( of parton in
Pomeron) dependence of at GeV. In the region
, GeV and , is
found to be of the form , which obeys
- factorization.Comment: LaTeX, 9 pages, Submitted to Phys. Rev. Letter
Search for Kaluza-Klein Graviton Emission in Collisions at TeV using the Missing Energy Signature
We report on a search for direct Kaluza-Klein graviton production in a data
sample of 84 of \ppb collisions at = 1.8 TeV, recorded
by the Collider Detector at Fermilab. We investigate the final state of large
missing transverse energy and one or two high energy jets. We compare the data
with the predictions from a -dimensional Kaluza-Klein scenario in which
gravity becomes strong at the TeV scale. At 95% confidence level (C.L.) for
=2, 4, and 6 we exclude an effective Planck scale below 1.0, 0.77, and 0.71
TeV, respectively.Comment: Submitted to PRL, 7 pages 4 figures/Revision includes 5 figure
Measurement of the average time-integrated mixing probability of b-flavored hadrons produced at the Tevatron
We have measured the number of like-sign (LS) and opposite-sign (OS) lepton
pairs arising from double semileptonic decays of and -hadrons,
pair-produced at the Fermilab Tevatron collider. The data samples were
collected with the Collider Detector at Fermilab (CDF) during the 1992-1995
collider run by triggering on the existence of and candidates
in an event. The observed ratio of LS to OS dileptons leads to a measurement of
the average time-integrated mixing probability of all produced -flavored
hadrons which decay weakly, (stat.)
(syst.), that is significantly larger than the world average .Comment: 47 pages, 10 figures, 15 tables Submitted to Phys. Rev.
- …