37 research outputs found

    Effect of Differential N-linked and O-linked Mannosylation on Recognition of Fungal Antigens by Dendritic Cells

    Get PDF
    BACKGROUND. An experimental approach for improving vaccine efficacy involves targeting antigens to mannose receptors (MRs) on dendritic cells (DCs) and other professional antigen presenting cells. Previously, we demonstrated that mannosylated Pichia pastoris-derived recombinant proteins exhibited increased immunogenicity compared to proteins lacking mannosylation. In order to gain insight into the mechanisms responsible for this observation, the present study examined the cellular uptake of the mannosylated and deglycosylated recombinant proteins. METHODOLOGY/PRINCIPAL FINDINGS. Utilizing transfected cell lines, roles for the macrophage mannose receptor (MMR, CD206) and DC-SIGN (CD209) in the recognition of the mannosylated, but not deglycosylated, antigens were demonstrated. The uptake of mannosylated antigens into murine bone marrow-derived DCs (BMDCs) was inhibited by yeast mannans (YMs), suggesting a mannose-specific C-type lectin receptor-dependent process, while the uptake of deglycosylated antigens remained unaffected. In particular, antigens with both N-linked and extensive O-linked mannosylation showed the highest binding and uptake by BMDCs. Finally, confocal microscopy studies revealed that both mannosylated and deglycosylated P. pastoris-derived recombinant proteins localized in MHC class II+ compartments within BMDCs. CONCLUSIONS/SIGNIFICANCE. Taken together with our previous results, these data suggest that increased uptake by mannose-specific C-type lectin receptors is the major mechanism responsible for the enhanced antigenicity seen with mannosylated proteins. These findings have important implications for vaccine design and contribute to our understanding of how glycosylation affects the immune response to eukaryotic pathogens.National Institutes of Health (RO1 AI25780, RO1 AI37532

    New resampling method for evaluating stability of clusters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hierarchical clustering is a widely applied tool in the analysis of microarray gene expression data. The assessment of cluster stability is a major challenge in clustering procedures. Statistical methods are required to distinguish between real and random clusters. Several methods for assessing cluster stability have been published, including resampling methods such as the bootstrap.</p> <p>We propose a new resampling method based on continuous weights to assess the stability of clusters in hierarchical clustering. While in bootstrapping approximately one third of the original items is lost, continuous weights avoid zero elements and instead allow non integer diagonal elements, which leads to retention of the full dimensionality of space, i.e. each variable of the original data set is represented in the resampling sample.</p> <p>Results</p> <p>Comparison of continuous weights and bootstrapping using real datasets and simulation studies reveals the advantage of continuous weights especially when the dataset has only few observations, few differentially expressed genes and the fold change of differentially expressed genes is low.</p> <p>Conclusion</p> <p>We recommend the use of continuous weights in small as well as in large datasets, because according to our results they produce at least the same results as conventional bootstrapping and in some cases they surpass it.</p

    Suppression of the Nrf2-Dependent Antioxidant Response by Glucocorticoids and 11β-HSD1-Mediated Glucocorticoid Activation in Hepatic Cells

    Get PDF
    Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key transcription factor regulating a plethora of detoxifying enzymes and antioxidant genes involved in drug metabolism and defence against oxidative stress. The glucocorticoid receptor (GR) is a ligand-induced transcription factor involved in the regulation of energy supply for metabolic needs to cope with various stressors. GR activity is controlled by glucocorticoids, which are synthesized in the adrenal glands and regenerated mainly in the liver from inactive cortisone by 11β-hydroxysteroid dehydrogenase-1 (11β-HSD1).; Using transfected HEK-293 cells and hepatic H4IIE cells we show that glucocorticoids, activated by 11β-HSD1 and acting through GR, suppress the Nrf2-dependent antioxidant response. The expression of the marker genes NQO1, HMOX1 and GST2A was suppressed upon treatment of 11β-HSD1 expressing cells with cortisone, an effect that was reversed by 11β-HSD1 inhibitors. Furthermore, our results demonstrate that elevated glucocorticoids lowered the ability of cells to detoxify H(2)O(2). Moreover, a comparison of gene expression in male and female rats revealed an opposite sexual dimorphism with an inverse relationship between 11β-HSD1 and Nrf2 target gene expression.; The results demonstrate a suppression of the cellular antioxidant defence capacity by glucocorticoids and suggest that elevated 11β-HSD1 activity may lead to impaired Nrf2-dependent antioxidant response. The gender-specific differences in hepatic expression levels of 11β-HSD1 and Nrf2 target genes and the impact of pharmacological inhibition of 11β-HSD1 on improving cellular capacity to cope with oxidative stress warrants further studies in vivo

    The Mitochondrial Genome of Toxocara canis

    Get PDF
    Toxocara canis (Ascaridida: Nematoda), which parasitizes (at the adult stage) the small intestine of canids, can be transmitted to a range of other mammals, including humans, and can cause the disease toxocariasis. Despite its significance as a pathogen, the genetics, epidemiology and biology of this parasite remain poorly understood. In addition, the zoonotic potential of related species of Toxocara, such as T. cati and T. malaysiensis, is not well known. Mitochondrial DNA is known to provide genetic markers for investigations in these areas, but complete mitochondrial genomic data have been lacking for T. canis and its congeners. In the present study, the mitochondrial genome of T. canis was amplified by long-range polymerase chain reaction (long PCR) and sequenced using a primer-walking strategy. This circular mitochondrial genome was 14162 bp and contained 12 protein-coding, 22 transfer RNA, and 2 ribosomal RNA genes consistent for secernentean nematodes, including Ascaris suum and Anisakis simplex (Ascaridida). The mitochondrial genome of T. canis provides genetic markers for studies into the systematics, population genetics and epidemiology of this zoonotic parasite and its congeners. Such markers can now be used in prospecting for cryptic species and for exploring host specificity and zoonotic potential, thus underpinning the prevention and control of toxocariasis in humans and other hosts

    Nonparametric analysis of treatment effects in ordered response models

    Full text link
    Treatment analyses based on average outcomes do not immediately generalize to the case of ordered responses because the expectation of an ordinally measured variable does not exist. The proposed remedy in this paper is a shift in focus to distributional effects. Assuming a threshold crossing model on both the ordered potential outcomes and the binary treatment variable, and leaving the distribution of error terms and functional forms unspecified, the paper discusses how the treatment effects can be bounded. The construction of bounds is illustrated in a simulated data example

    Association between different anti-Tat antibody isotypes and HIV disease progression: data from an African cohort

    Get PDF
    Background: The presence of IgG and IgM against Tat, an HIV protein important for viral replication and immune dysfunction, is associated with slow disease progression in clade B HIV-infected individuals. However, although Tat activities strictly depend on the viral clade, our knowledge about the importance of anti-Tat antibodies in non-clade B HIV infection is poor. The objective of this study was to investigate the association of different anti-Tat antibody isotypes with disease progression in non-clade B HIV-infected subjects and to study the relationship between anti-Tat humoral responses and immunological abnormalities. Methods: Anti-clade B and - clade C Tat IgG, IgM and IgA titers were assessed in serum samples from 96 cART-naive subjects with chronic HIV infection from Mbeya, Tanzania, and associated with CD4(+) T cell count, plasma viremia and CD4(+) and CD8(+) T cell phenotypes. Results: Anti-Tat IgM were preferentially detected in chronic HIV-infected subjects with low T cell activation (p-value = 0.03) and correlated with higher CD4(+) T cell counts and lower viral loads irrespective of the duration of infection (p-value = 0.019 and p-value = 0.037 respectively). Conversely, anti-Tat IgA were preferentially detected in individuals with low CD4(+) T cell counts and high viral load (p-value = 0.02 and p-value < 0.001 respectively). The simultaneous presence of anti-Tat IgG and IgM protected from fast CD4(+) T cell decline (p-value < 0.01) and accumulation of CD38(+) HLADR(+) CD8(+) T cells (p-value = 0.029). Conclusions: Anti-Tat IgG alone are not protective in non-clade B infected subjects, unless concomitant with IgM, suggesting a protective role of persistent anti-Tat IgM irrespective of the infecting clade
    corecore