33 research outputs found

    A Generic Bio-Economic Farm Model for Environmental and Economic Assessment of Agricultural Systems

    Get PDF
    Bio-economic farm models are tools to evaluate ex-post or to assess ex-ante the impact of policy and technology change on agriculture, economics and environment. Recently, various BEFMs have been developed, often for one purpose or location, but hardly any of these models are re-used later for other purposes or locations. The Farm System Simulator (FSSIM) provides a generic framework enabling the application of BEFMs under various situations and for different purposes (generating supply response functions and detailed regional or farm type assessments). FSSIM is set up as a component-based framework with components representing farmer objectives, risk, calibration, policies, current activities, alternative activities and different types of activities (e.g., annual and perennial cropping and livestock). The generic nature of FSSIM is evaluated using five criteria by examining its applications. FSSIM has been applied for different climate zones and soil types (criterion 1) and to a range of different farm types (criterion 2) with different specializations, intensities and sizes. In most applications FSSIM has been used to assess the effects of policy changes and in two applications to assess the impact of technological innovations (criterion 3). In the various applications, different data sources, level of detail (e.g., criterion 4) and model configurations have been used. FSSIM has been linked to an economic and several biophysical models (criterion 5). The model is available for applications to other conditions and research issues, and it is open to be further tested and to be extended with new components, indicators or linkages to other models

    An Implantable Vascularized Protein Gel Construct That Supports Human Fetal Hepatoblast Survival and Infection by Hepatitis C Virus in Mice

    Get PDF
    Widely accessible small animal models suitable for the study of hepatitis C virus (HCV) in vivo are lacking, primarily because rodent hepatocytes cannot be productively infected and because human hepatocytes are not easily engrafted in immunodeficient mice.We report here on a novel approach for human hepatocyte engraftment that involves subcutaneous implantation of primary human fetal hepatoblasts (HFH) within a vascularized rat collagen type I/human fibronectin (rCI/hFN) gel containing Bcl-2-transduced human umbilical vein endothelial cells (Bcl-2-HUVEC) in severe combined immunodeficient X beige (SCID/bg) mice. Maturing hepatic epithelial cells in HFH/Bcl-2-HUVEC co-implants displayed endocytotic activity at the basolateral surface, canalicular microvilli and apical tight junctions between adjacent cells assessed by transmission electron microscopy. Some primary HFH, but not Huh-7.5 hepatoma cells, appeared to differentiate towards a cholangiocyte lineage within the gels, based on histological appearance and cytokeratin 7 (CK7) mRNA and protein expression. Levels of human albumin and hepatic nuclear factor 4alpha (HNF4alpha) mRNA expression in gel implants and plasma human albumin levels in mice engrafted with HFH and Bcl-2-HUVEC were somewhat enhanced by including murine liver-like basement membrane (mLBM) components and/or hepatocyte growth factor (HGF)-HUVEC within the gel matrix. Following ex vivo viral adsorption, both HFH/Bcl-2-HUVEC and Huh-7.5/Bcl-2-HUVEC co-implants sustained HCV Jc1 infection for at least 2 weeks in vivo, based on qRT-PCR and immunoelectron microscopic (IEM) analyses of gel tissue.The system described here thus provides the basis for a simple and robust small animal model of HFH engraftment that is applicable to the study of HCV infections in vivo

    Using genome-scale metabolic networks for analysis, visualization, and integration of targeted metabolomics data.

    No full text
    Interpretation of metabolomics data in the context of biological pathways is important to gain knowledge about underlying metabolic processes. In this chapter we present methods to analyze genome-scale models (GSMs) and metabolomics data together. This includes reading and mining of GSMs using the SBTab format to retrieve information on genes, reactions, and metabolites. Furthermore, the chapter showcases the generation of metabolic pathway maps using the Escher tool, which can be used for data visualization. Lastly, approaches to constrain flux balance analysis (FBA) by metabolomics data are presented

    Clinical application of rehabilitation technologies in children undergoing neurorehabilitation

    Full text link
    The application of rehabilitation technologies in children with neurological impairments appears promising as these systems can induce repetitive goal-directed movements to complement conventional treatments. Characteristics of robotic-supported and computer-assisted training are in line with principles of motor learning and include high numbers of repetitions, prolonged training durations, and online feedback about the patient’s active participation. When experienced therapists apply these technologies, they can be considered a rather safe and in combination with virtual realities a motivating supplementary approach. Therapists might have to take into account that there might be some factors that are different when applying such technologies to children with congenital versus acquired neurological lesions. Currently, clinical guidelines on how to apply such technologies are missing, and clinical evidence considering the effectiveness of such technologies has just started to commence in pediatric neurorehabilitation. Experienced therapists formulated recommendations that might be useful to those with less experience on how to apply some of these systems to train the lower and upper extremity intensively and playfully. Finally, suggestions are made on how these technologies could be integrated into the clinical path

    Orientation towards IC-Technologies and Value Added Services at Logistics Service Providers

    No full text
    Value added services in combination with the utilization of innovative information and communication-technologies are a valuable source for differentiation of logistics service providers. To examine the orientation of logistics companies towards these aspects and to analyze their usage of formalized pro-cesses for the development of new services, a study among the German logis-tics industry was conducted. The study is based soundly in the theories of the Resource-based view, the Service-dominant logic and the concept of service engineering. With regard to the current market situation the main research results reveal a controversy: On the one hand, logistics service providers have realized the potential of both information and communication-technologies and value added services. On the other hand, they still lack formal develop-ment procedures. Closing this gap will be a challenging task for the manage-ment of the future
    corecore