37 research outputs found

    High-K volcanism in the Afyon region, western Turkey: from Si-oversaturated to Si-undersaturated volcanism

    Get PDF
    Volcanic rocks of the Afyon province (eastern part of western Anatolia) make up a multistage potassic and ultrapotassic alkaline series dated from 14 to 12 Ma. The early-stage Si-oversaturated volcanic rocks around the Afyon city and further southward are trachyandesitic volcanic activity (14.23 ± 0.09 Ma). Late-stage Si-undersaturated volcanism in the southernmost part of the Afyon volcanic province took place in three episodes inferred from their stratigraphic relationships and ages. Melilite– leucitites (11.50 ± 0.03 Ma), spotted rachyandesites, tephryphonolites and lamproites (11.91 ± 0.13 Ma) formed in the first episode; trachyandesites in the second episode and finally phonotephrites, phonolite, basaltic trachyandesites and nosean-bearing trachyandesites during the last episode. The parameter Q [normative q-(ne + lc + kls + ol)] of western Anatolia volcanism clearly decreased southward with time becoming zero in the time interval 10–15 Ma. The magmatism experienced a sudden change in the extent of Si saturation after 14 Ma, during late-stage volcanic activity of Afyon volcanic province at around 12 Ma, though there was some coexistence of Si-oversaturated and Si-undersaturated magmas during the whole life of Afyon volcanic province

    The Nevados de Payachata volcanic region (18°S/69°W, N. Chile)

    Full text link
    Subduction-related volcanism in the Nevados de Payachata region of the Central Andes at 18°S comprises two temporally and geochemically distinct phases. An older period of magmatism is represented by glaciated stratocones and ignimbrite sheets of late Miocene age. The Pleistocene to Recent phase (≤0.3 Ma) includes the twin stratovolcanoes Volcan Pomerape and Volcan Parinacota (the Nevados de Payachata volcanic group) and two small centers to the west (i. e., Caquena and Vilacollo). Both stratovolcanoes consist of an older dome-and-flow series capped by an andesitic cone. The younger cone, i. e., V. Parinacota, suffered a postglacial cone collapse producing a widespread debris-avalanche deposit. Subsequently, the cone reformed during a brief, second volcanic episode. A number of small, relatively mafic, satellitic cinder cones and associated flows were produced during the most recent activity at V. Parinacota. At the older cone, i. e., V. Pomerape, an early dome sequence with an overlying isolated mafic spatter cone and the cone-forming andesitic-dacitic phase (mostly flows) have been recognized. The two Nevados de Payachata stratovolcanoes display continuous major- and trace-element trends from high-K 2 O basaltic andesites through rhyolites (53%–76% SiO 2 ) that are well defined and distinct from those of the older volcanic centers. Petrography, chemical composition, and eruptive styles at V. Parinacota differ between pre- and post-debris-avalanche lavas. Precollapse flows have abundant amphibole (at SiO 2 > 59 wt%) and lower Mg numbers than postcollapse lavas, which are generally less silicic and more restricted in composition. Compositional variations indicate that the magmas of the Nevados de Payachata volcanic group evolved through a combination of fractional crystallization, crustal assimilation, and intratrend magma mixing. Isotope compositions exhibit only minor variations. Pb-isotope ratios are relatively low ( 206 Pb/ 204 Pb = 17.95–18.20 and 208 Pb/ 204 Pb = 38.2–38.5); 87 Sr/ 86 Sr ratios range 0.70612–0.70707, 143 Nd/ 144 Nd ratios range 0.51238–0.51230, and γ 18 O SMOW values range from + 6.8% o to + 7.6% o SMOW. A comparison with other Central Volcanic Zone centers shows that the Nevados de Payachata magmas are unusually rich in Ba (up to 1800 ppm) and Sr (up to 1700 ppm) and thus represent an unusual chemical signature in the Andean arc. These chemical and isotope variations suggest a complex petrogenetic evolution involving at least three distinct components. Primary mantle-derived melts, which are similar to those generated by subduction processes throughout the Andean arc, are modified by deep crustal interactions to produce magmas that are parental to those erupted at the surface. These magmas subsequently evolve at shallower levels through assimilation-crystallization processes involving upper crust and intratrend magma mixing which in both cases were restricted to end members of low isotopic contrast.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47805/1/445_2005_Article_BF01073587.pd

    Two-stage subduction history under North America inferred from multiple-frequency tomography

    No full text
    Eastward subduction of oceanic tectonic plates has shaped the geologic history of western North America over the past 150 million years. The mountain-building and volcanism that brought forth the spectacular landscapes of the West are credited to the vast ancient Farallon plate, which interacted mechanically and chemically with the overlying continent as it plunged back into the mantle. Here, we use finite-frequency travel-time and amplitude measurements of teleseismic P-waves in seven frequency bands to obtain a high-resolution tomographic image to 1,800 km depth. We discover several large, previously unknown pieces of the plate which show that two distinct stages of whole-mantle subduction are present under North America. The currently active one descends from the Pacific northwest coast to 1,500 km depth beneath the Great Plains, whereas its stalled predecessor occupies the transition zone and lower mantle beneath the eastern half of the continent. We argue that the separation between them is linked to the Laramide era 70-50 Myr ago, a time of unusual volcanism and mountain-building far inland generally explained by an episode of extremely flat subduction. © 2008 Macmillan Publishers Limited
    corecore