53 research outputs found

    The role of rapid diagnostics in managing Ebola epidemics

    Get PDF
    Ebola emerged in West Africa around December 2013 and swept through Guinea, Sierra Leone and Liberia, giving rise to 27,748 confirmed, probable and suspected cases reported by 29 July 2015. Case diagnoses during the epidemic have relied on polymerase chain reaction-based tests. Owing to limited laboratory capacity and local transport infrastructure, the delays from sample collection to test results being available have often been 2 days or more. Point-of-care rapid diagnostic tests offer the potential to substantially reduce these delays. We review Ebola rapid diagnostic tests approved by the World Health Organization and those currently in development. Such rapid diagnostic tests could allow early triaging of patients, thereby reducing the potential for nosocomial transmission. In addition, despite the lower test accuracy, rapid diagnostic test-based diagnosis may be beneficial in some contexts because of the reduced time spent by uninfected individuals in health-care settings where they may be at increased risk of infection; this also frees up hospital beds. We use mathematical modelling to explore the potential benefits of diagnostic testing strategies involving rapid diagnostic tests alone and in combination with polymerase chain reaction testing. Our analysis indicates that the use of rapid diagnostic tests with sensitivity and specificity comparable with those currently under development always enhances control, whether evaluated at a health-care-unit or population level. If such tests had been available throughout the recent epidemic, we estimate, for Sierra Leone, that their use in combination with confirmatory polymerase chain-reaction testing might have reduced the scale of the epidemic by over a third

    SAVVY Vaginal Gel (C31G) for Prevention of HIV Infection: A Randomized Controlled Trial in Nigeria

    Get PDF
    The objective of this trial was to determine the effectiveness of 1.0% C31G (SAVVY) in preventing male-to-female vaginal transmission of HIV infection among women at high risk.This was a Phase 3, double-blind, randomized, placebo-controlled trial. Participants made up to 12 monthly follow-up visits for HIV testing, adverse event reporting, and study product supply. The study was conducted between September 2004 and December 2006 in Lagos and Ibadan, Nigeria, where we enrolled 2153 HIV-negative women at high risk of HIV infection. Participants were randomized 1 ratio 1 to SAVVY or placebo. The effectiveness endpoint was incidence of HIV infection as indicated by detection of HIV antibodies in oral mucosal transudate (rapid test) or blood (ELISA), and confirmed by Western blot or PCR testing. We observed 33 seroconversions (21 in the SAVVY group, 12 in the placebo group). The Kaplan-Meier estimates of the cumulative probability of HIV infection at 12 months were 0.028 in the SAVVY group and 0.015 in the placebo group (2-sided p-value for the log-rank test of treatment effect 0.121). The point estimate of the hazard ratio was 1.7 for SAVVY versus placebo (95% confidence interval 0.9, 3.5). Because of lower-than-expected HIV incidence, we did not observe the required number of HIV infections (66) for adequate power to detect an effect of SAVVY. Follow-up frequencies of adverse events, reproductive tract adverse events, abnormal pelvic examination findings, chlamydial infections and vaginal infections were similar in the study arms. No serious adverse event was attributable to SAVVY use.SAVVY did not reduce the incidence of HIV infection. Although the hazard ratio was higher in the SAVVY than the placebo group, we cannot conclude that there was a harmful treatment effect of SAVVY

    Regulators of AWC-Mediated Olfactory Plasticity in Caenorhabditis elegans

    Get PDF
    While most sensory neurons will adapt to prolonged stimulation by down-regulating their responsiveness to the signal, it is not clear which events initiate long-lasting sensory adaptation. Likewise, we are just beginning to understand how the physiology of the adapted cell is altered. Caenorhabditis elegans is inherently attracted to specific odors that are sensed by the paired AWC olfactory sensory neurons. The attraction diminishes if the animal experiences these odors for a prolonged period of time in the absence of food. The AWC neuron responds acutely to odor-exposure by closing calcium channels. While odortaxis requires a Gα subunit protein, cGMP-gated channels, and guanylyl cyclases, adaptation to prolonged odor exposure requires nuclear entry of the cGMP-dependent protein kinase, EGL-4. We asked which candidate members of the olfactory signal transduction pathway promote nuclear entry of EGL-4 and which molecules might induce long-term adaptation downstream of EGL-4 nuclear entry. We found that initiation of long-term adaptation, as assessed by nuclear entry of EGL-4, is dependent on G-protein mediated signaling but is independent of fluxes in calcium levels. We show that long-term adaptation requires polyunsaturated fatty acids (PUFAs) that may act on the transient receptor potential (TRP) channel type V OSM-9 downstream of EGL-4 nuclear entry. We also present evidence that high diacylglycerol (DAG) levels block long-term adaptation without affecting EGL-4 nuclear entry. Our analysis provides a model for the process of long-term adaptation that occurs within the AWC neuron of C. elegans: G-protein signaling initiates long-lasting olfactory adaptation by promoting the nuclear entry of EGL-4, and once EGL-4 has entered the nucleus, processes such as PUFA activation of the TRP channel OSM-9 may dampen the output of the AWC neuron

    Transient receptor potential canonical 4 and 5 proteins as targets in cancer therapeutics

    Get PDF
    Novel approaches towards cancer therapy are urgently needed. One approach might be to target ion channels mediating Ca²+ entry because of the critical roles played by Ca²+ in many cell types, including cancer cells. There are several types of these ion channels, but here we address those formed by assembly of transient receptor potential canonical (TRPC) proteins, particularly those which involve two closely related members of the family: TRPC4 and TRPC5. We focus on these proteins because recent studies point to roles in important aspects of cancer: drug resistance, transmission of drug resistance through extracellular vesicles, tumour vascularisation, and evoked cancer cell death by the TRPC4/5 channel activator (−)-englerin A. We conclude that further research is both justified and necessary before these proteins can be considered as strong targets for anti-cancer cell drug discovery programmes. It is nevertheless already apparent that inhibitors of the channels would be unlikely to cause significant adverse effects, but, rather, have other effects which may be beneficial in the context of cancer and chemotherapy, potentially including suppression of innate fear, visceral pain and pathological cardiac remodelling

    TRP Channels: Their Function and Potentiality as Drug Targets

    Full text link

    Regulation of Ca2+ channel expression at the cell surface by the small G-protein kir/Gem

    No full text
    Voltage-dependent calcium (Ca2+) channels are involved in many specialized cellular functions, and are controlled by intracellular signals such as heterotrimeric G-proteins, protein kinases and calmodulin (CaM). However, the direct role of small G-proteins in the regulation of Ca2+ channels is unclear. We report here that the GTP-bound form of kir/Gem, identified originally as a Ras-related small G-protein that binds CaM, inhibits high-voltage-activated Ca2+ channel activities by interacting directly with the beta-subunit. The reduced channel activities are due to a decrease in alpha1-subunit expression at the plasma membrane. The binding of Ca2+/CaM to kir/Gem is required for this inhibitory effect by promoting the cytoplasmic localization of kir/Gem. Inhibition of L-type Ca2+ channels by kir/Gem prevents Ca2+-triggered exocytosis in hormone-secreting cells. We propose that the small G-protein kir/Gem, interacting with beta-subunits, regulates Ca2+ channel expression at the cell surface
    corecore