18 research outputs found

    2-Imidazole as a Substitute for the Electrophilic Group Gives Highly Potent Prolyl Oligopeptidase Inhibitors

    Get PDF
    Different five-membered nitrogen-containing heteroaromatics in the position of the typical electrophilic group in prolyl oligopeptidase (PREP) inhibitors were investigated and compared to tetrazole. The 2-imidazoles were highly potent inhibitors of the proteolytic activity. The binding mode for the basic imidazole was studied by molecular docking as it was expected to differ from the acidic tetrazole. A new putative noncovalent binding mode with an interaction to His680 was found for the 2-imidazoles. Inhibition of the proteolytic activity did not correlate with the modulating effect on protein-protein-interaction-derived functions of PREP (i.e., dimerization of alpha-synuclein and autophagy). Among the highly potent PREP inhibiting 2-imidazoles, only one was also a potent modulator of PREP-catalyzed alpha-synuclein dimerization, indicating that the linker length on the opposite side of the molecule from the five-membered heteroaromatic is critical for the disconnected structure-activity relationships

    Is there an ideal way to initiate antiplatelet therapy with aspirin? A crossover study on healthy volunteers evaluating different dosing schemes with whole blood aggregometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Guidelines recommend an early initiation of aspirin treatment in patients with acute cerebral ischemia. Comparative studies on the best starting dose for initiating aspirin therapy to achieve a rapid antiplatelet effect do not exist. This study evaluated the platelet inhibitory effect in healthy volunteers by using three different aspirin loading doses to gain a model for initiating antiplatelet treatment in acute strokes patients.</p> <p>Methods</p> <p>Using whole blood aggregometry, this study with a prospective, uncontrolled, open, crossover design examined 12 healthy volunteers treated with three different aspirin loading doses: intravenous 500 mg aspirin, oral 500 mg aspirin, and a course of 200 mg aspirin on two subsequent days followed by a five-day course of 100 mg aspirin. Aspirin low response was defined as change of impedance exceeding 0 Ω after stimulation with arachidonic acid.</p> <p>Results</p> <p>Sufficient antiplatelet effectiveness was gained within 30 seconds when intravenous 500 mg aspirin was used. The mean time until antiplatelet effect was 74 minutes for 500 mg aspirin taken orally and 662 minutes (11.2 hours) for the dose scheme with 200 mg aspirin with a high inter- and intraindividual variability in those two regimes. Platelet aggregation returned to the baseline range during the wash-out phase within 4 days.</p> <p>Conclusion</p> <p>Our study reveals that the antiplatelet effect differs significantly between the three different aspirin starting dosages with a high inter- and intraindividual variability of antiplatelet response in our healthy volunteers. To ensure an early platelet inhibitory effect in acute stroke patients, it could be advantageous to initiate the therapy with an intravenous loading dose of 500 mg aspirin. However, clinical outcome studies must still define the best way to initiate antiplatelet treatment with aspirin.</p

    Chicken genome analysis reveals novel genes encoding biotin-binding proteins related to avidin family

    Get PDF
    BACKGROUND: A chicken egg contains several biotin-binding proteins (BBPs), whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. RESULTS: Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. CONCLUSION: We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins

    Synaptic NMDA Receptor-Dependent Ca2+ Entry Drives Membrane Potential and Ca2+ Oscillations in Spinal Ventral Horn Neurons

    Get PDF
    During vertebrate locomotion, spinal neurons act as oscillators when initiated by glutamate release from descending systems. Activation of NMDA receptors initiates Ca(2+)-mediated intrinsic membrane potential oscillations in central pattern generator (CPG) neurons. NMDA receptor-dependent intrinsic oscillations require Ca(2+)-dependent K(+) (K(Ca)2) channels for burst termination. However, the location of Ca(2+) entry mediating K(Ca)2 channel activation, and type of Ca(2+) channel – which includes NMDA receptors and voltage-gated Ca(2+) channels (VGCCs) – remains elusive. NMDA receptor-dependent Ca(2+) entry necessitates presynaptic release of glutamate, implying a location at active synapses within dendrites, whereas VGCC-dependent Ca(2+) entry is not similarly constrained. Where Ca(2+) enters relative to K(Ca)2 channels is crucial to information processing of synaptic inputs necessary to coordinate locomotion. We demonstrate that Ca(2+) permeating NMDA receptors is the dominant source of Ca(2+) during NMDA-dependent oscillations in lamprey spinal neurons. This Ca(2+) entry is synaptically located, NMDA receptor-dependent, and sufficient to activate K(Ca)2 channels at excitatory interneuron synapses onto other CPG neurons. Selective blockade of VGCCs reduces whole-cell Ca(2+) entry but leaves membrane potential and Ca(2+) oscillations unaffected. Furthermore, repetitive oscillations are prevented by fast, but not slow, Ca(2+) chelation. Taken together, these results demonstrate that K(Ca)2 channels are closely located to NMDA receptor-dependent Ca(2+) entry. The close spatial relationship between NMDA receptors and K(Ca)2 channels provides an intrinsic mechanism whereby synaptic excitation both excites and subsequently inhibits ventral horn neurons of the spinal motor system. This places the components necessary for oscillation generation, and hence locomotion, at glutamatergic synapses
    corecore