179 research outputs found

    Topology by Design in Magnetic nano-Materials: Artificial Spin Ice

    Full text link
    Artificial Spin Ices are two dimensional arrays of magnetic, interacting nano-structures whose geometry can be chosen at will, and whose elementary degrees of freedom can be characterized directly. They were introduced at first to study frustration in a controllable setting, to mimic the behavior of spin ice rare earth pyrochlores, but at more useful temperature and field ranges and with direct characterization, and to provide practical implementation to celebrated, exactly solvable models of statistical mechanics previously devised to gain an understanding of degenerate ensembles with residual entropy. With the evolution of nano--fabrication and of experimental protocols it is now possible to characterize the material in real-time, real-space, and to realize virtually any geometry, for direct control over the collective dynamics. This has recently opened a path toward the deliberate design of novel, exotic states, not found in natural materials, and often characterized by topological properties. Without any pretense of exhaustiveness, we will provide an introduction to the material, the early works, and then, by reporting on more recent results, we will proceed to describe the new direction, which includes the design of desired topological states and their implications to kinetics.Comment: 29 pages, 13 figures, 116 references, Book Chapte

    Silencing of genes involved in Anaplasma marginale-tick interactions affects the pathogen developmental cycle in Dermacentor variabilis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cattle pathogen, <it>Anaplasma marginale</it>, undergoes a developmental cycle in ticks that begins in gut cells. Transmission to cattle occurs from salivary glands during a second tick feeding. At each site of development two forms of <it>A. marginale </it>(reticulated and dense) occur within a parasitophorous vacuole in the host cell cytoplasm. However, the role of tick genes in pathogen development is unknown. Four genes, found in previous studies to be differentially expressed in <it>Dermacentor variabilis </it>ticks in response to infection with <it>A. marginale</it>, were silenced by RNA interference (RNAi) to determine the effect of silencing on the <it>A. marginale </it>developmental cycle. These four genes encoded for putative glutathione S-transferase (GST), salivary selenoprotein M (SelM), H+ transporting lysosomal vacuolar proton pump (vATPase) and subolesin.</p> <p>Results</p> <p>The impact of gene knockdown on <it>A. marginale </it>tick infections, both after acquiring infection and after a second transmission feeding, was determined and studied by light microscopy. Silencing of these genes had a different impact on <it>A. marginale </it>development in different tick tissues by affecting infection levels, the densities of colonies containing reticulated or dense forms and tissue morphology. Salivary gland infections were not seen in any of the gene-silenced ticks, raising the question of whether these ticks were able to transmit the pathogen.</p> <p>Conclusion</p> <p>The results of this RNAi and light microscopic analyses of tick tissues infected with <it>A. marginale </it>after the silencing of genes functionally important for pathogen development suggest a role for these molecules during pathogen life cycle in ticks.</p

    How is genetic testing evaluated? A systematic review of the literature

    Get PDF
    open8Given the rapid development of genetic tests, an assessment of their benefits, risks, and limitations is crucial for public health practice. We performed a systematic review aimed at identifying and comparing the existing evaluation frameworks for genetic tests. We searched PUBMED, SCOPUS, ISI Web of Knowledge, Google Scholar, Google, and gray literature sources for any documents describing such frameworks. We identified 29 evaluation frameworks published between 2000 and 2017, mostly based on the ACCE Framework (n = 13 models), or on the HTA process (n = 6), or both (n = 2). Others refer to the Wilson and Jungner screening criteria (n = 3) or to a mixture of different criteria (n = 5). Due to the widespread use of the ACCE Framework, the most frequently used evaluation criteria are analytic and clinical validity, clinical utility and ethical, legal and social implications. Less attention is given to the context of implementation. An economic dimension is always considered, but not in great detail. Consideration of delivery models, organizational aspects, and consumer viewpoint is often lacking. A deeper analysis of such context-related evaluation dimensions may strengthen a comprehensive evaluation of genetic tests and support the decision-making process.openPitini, Erica*; de Vito, Corrado; Marzuillo, Carolina; D’Andrea, Elvira; Rosso, Annalisa; Federici, Antonio; Di Maria, Emilio; Villari, PaoloPitini, Erica; de Vito, Corrado; Marzuillo, Carolina; D’Andrea, Elvira; Rosso, Annalisa; Federici, Antonio; Di Maria, Emilio; Villari, Paol

    Diagnosis of multisystem inflammatory syndrome in children by a whole-blood transcriptional signature

    Get PDF
    BACKGROUND: To identify a diagnostic blood transcriptomic signature that distinguishes multisystem inflammatory syndrome in children (MIS-C) from Kawasaki disease (KD), bacterial infections, and viral infections. METHODS: Children presenting with MIS-C to participating hospitals in the United Kingdom and the European Union between April 2020 and April 2021 were prospectively recruited. Whole-blood RNA Sequencing was performed, contrasting the transcriptomes of children with MIS-C (n = 38) to those from children with KD (n = 136), definite bacterial (DB; n = 188) and viral infections (DV; n = 138). Genes significantly differentially expressed (SDE) between MIS-C and comparator groups were identified. Feature selection was used to identify genes that optimally distinguish MIS-C from other diseases, which were subsequently translated into RT-qPCR assays and evaluated in an independent validation set comprising MIS-C (n = 37), KD (n = 19), DB (n = 56), DV (n = 43), and COVID-19 (n = 39). RESULTS: In the discovery set, 5696 genes were SDE between MIS-C and combined comparator disease groups. Five genes were identified as potential MIS-C diagnostic biomarkers (HSPBAP1, VPS37C, TGFB1, MX2, and TRBV11-2), achieving an AUC of 96.8% (95% CI: 94.6%-98.9%) in the discovery set, and were translated into RT-qPCR assays. The RT-qPCR 5-gene signature achieved an AUC of 93.2% (95% CI: 88.3%-97.7%) in the independent validation set when distinguishing MIS-C from KD, DB, and DV. CONCLUSIONS: MIS-C can be distinguished from KD, DB, and DV groups using a 5-gene blood RNA expression signature. The small number of genes in the signature and good performance in both discovery and validation sets should enable the development of a diagnostic test for MIS-C

    Sex Differences in the Brain: A Whole Body Perspective

    Get PDF
    Most writing on sexual differentiation of the mammalian brain (including our own) considers just two organs: the gonads and the brain. This perspective, which leaves out all other body parts, misleads us in several ways. First, there is accumulating evidence that all organs are sexually differentiated, and that sex differences in peripheral organs affect the brain. We demonstrate this by reviewing examples involving sex differences in muscles, adipose tissue, the liver, immune system, gut, kidneys, bladder, and placenta that affect the nervous system and behavior. The second consequence of ignoring other organs when considering neural sex differences is that we are likely to miss the fact that some brain sex differences develop to compensate for differences in the internal environment (i.e., because male and female brains operate in different bodies, sex differences are required to make output/function more similar in the two sexes). We also consider evidence that sex differences in sensory systems cause male and female brains to perceive different information about the world; the two sexes are also perceived by the world differently and therefore exposed to differences in experience via treatment by others. Although the topic of sex differences in the brain is often seen as much more emotionally charged than studies of sex differences in other organs, the dichotomy is largely false. By putting the brain firmly back in the body, sex differences in the brain are predictable and can be more completely understood

    Which Lynch syndrome screening programs could be implemented in the "real world"? A systematic review of economic evaluations

    Get PDF
    Purpose: Lynch syndrome (LS) screening can significantly reduce cancer morbidity and mortality in mutation carriers. Our aim was to identify cost-effective LS screening programs that can be implemented in the "real world."Methods: We performed a systematic review of full economic evaluations of genetic screening for LS in different target populations; health outcomes were estimated in life-years gained or quality-adjusted life-years.Results: Overall, 20 studies were included in the systematic review. Based on the study populations, we identified six categories of LS screening program: colorectal cancer (CRC)-based, endometrial cancer-based, general population-based, LS family registry-based, cascade testing-based, and genetics clinic-based screening programs. We performed an in-depth analysis of CRC-based LS programs, classifying them into three additional subcategories: universal, age-targeted, and selective. In five studies, universal programs based on immunohistochemistry, either alone or in combination with the BRAF test, were cost-effective compared with no screening, while in two studies age-targeted programs with a cutoff of 70 years were cost-effective when compared with age-targeted programs with lower age thresholds. Conclusion: Universal or <70 years-age-targeted CRC-based LS screening programs are cost-effective and should be implemented in the "real world

    Exoerythrocytic Plasmodium Parasites Secrete a Cysteine Protease Inhibitor Involved in Sporozoite Invasion and Capable of Blocking Cell Death of Host Hepatocytes

    Get PDF
    Plasmodium parasites must control cysteine protease activity that is critical for hepatocyte invasion by sporozoites, liver stage development, host cell survival and merozoite liberation. Here we show that exoerythrocytic P. berghei parasites express a potent cysteine protease inhibitor (PbICP, P. berghei inhibitor of cysteine proteases). We provide evidence that it has an important function in sporozoite invasion and is capable of blocking hepatocyte cell death. Pre-incubation with specific anti-PbICP antiserum significantly decreased the ability of sporozoites to infect hepatocytes and expression of PbICP in mammalian cells protects them against peroxide- and camptothecin-induced cell death. PbICP is secreted by sporozoites prior to and after hepatocyte invasion, localizes to the parasitophorous vacuole as well as to the parasite cytoplasm in the schizont stage and is released into the host cell cytoplasm at the end of the liver stage. Like its homolog falstatin/PfICP in P. falciparum, PbICP consists of a classical N-terminal signal peptide, a long N-terminal extension region and a chagasin-like C-terminal domain. In exoerythrocytic parasites, PbICP is posttranslationally processed, leading to liberation of the C-terminal chagasin-like domain. Biochemical analysis has revealed that both full-length PbICP and the truncated C-terminal domain are very potent inhibitors of cathepsin L-like host and parasite cysteine proteases. The results presented in this study suggest that the inhibitor plays an important role in sporozoite invasion of host cells and in parasite survival during liver stage development by inhibiting host cell proteases involved in programmed cell death
    • …
    corecore