19 research outputs found

    Does cone beam CT actually ameliorate stab wound analysis in bone?

    No full text
    This study aims at verifying the potential of a recent radiological technology, cone beam CT (CBCT), for the reproduction of digital 3D models which may allow the user to verify the inner morphology of sharp force wounds within the bone tissue. Several sharp force wounds were produced by both single and double cutting edge weapons on cancellous and cortical bone, and then acquired by cone beam CT scan. The lesions were analysed by different software (a DICOM file viewer and reverse engineering software). Results verified the limited performances of such technology for lesions made on cortical bone, whereas on cancellous bone reliable models were obtained, and the precise morphology within the bone tissues was visible. On the basis of such results, a method for differential diagnosis between cutmarks by sharp tools with a single and two cutting edges can be proposed. On the other hand, the metrical computerised analysis of lesions highlights a clear increase of error range for measurements under 3 mm. Metric data taken by different operators shows a strong dispersion (% relative standard deviation). This pilot study shows that the use of CBCT technology can improve the investigation of morphological stab wounds on cancellous bone. Conversely metric analysis of the lesions as well as morphological analysis of wound dimension under 3 mm do not seem to be reliable

    Postmortem computed tomography age assessment of juvenile dentition:comparison against traditional OPT assessment

    No full text
    Age estimation is one of the primary demographic features used in the identification of juvenile remains. Determining the accuracy and repeatability of age estimations based on postmortem computed tomography (PMCT) data compared with those using conventional orthopantomography (OPT) images is important to validate the use of PMCT as a single imaging technique in forensic and disaster victim identification (DVI). In this study, 19 juvenile mandibles and maxilla of known age underwent both OPT and PMCT. Three raters then estimated dental age using the resulting images and 3D reconstructions. This assessment showed excellent agreement between the age estimations using the two techniques for all three observers. PMCT also offers a greater range of measurements for both the dentition and the whole human skeleton using a single image acquisition and therefore has the potential to improve both the speed and accuracy of age estimation

    Post-mortem computed tomography and 3D imaging:anthropological applications for juvenile remains

    No full text
    Anthropological examination of defleshed bones is routinely used in medico-legal investigations to establish an individual's biological profile. However, when dealing with the recently deceased, the removal of soft tissue from bone can be an extremely time consuming procedure that requires the presence of a trained anthropologist. In addition, due to its invasive nature, in some disaster victim identification scenarios the maceration of bones is discouraged by religious practices and beliefs, or even prohibited by national laws and regulations. Currently, three different radiological techniques may be used in the investigative process; plain X-ray, dental X-ray and fluoroscopy. However, recent advances in multi-detector computed tomography (MDCT) mean that it is now possible to acquire morphological skeletal information from high resolution images, reducing the necessity for invasive procedures. This review paper considers the possible applications of a virtual anthropological examination by reviewing the main juvenile age determination methods used by anthropologists at present and their possible adaption to MDCT
    corecore